
 Unfolding mixed-symmetry fields in AdS and the BMV conjecture: I. General formalism

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

JHEP07(2009)013

(http://iopscience.iop.org/1126-6708/2009/07/013)

Download details:

IP Address: 80.92.225.132

The article was downloaded on 03/04/2010 at 09:12

Please note that terms and conditions apply.

The Table of Contents and more related content is available

Home Search Collections Journals About Contact us My IOPscience

http://www.iop.org/Terms_&_Conditions
http://iopscience.iop.org/1126-6708/2009/07
http://iopscience.iop.org/1126-6708/2009/07/013/related
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J
H
E
P
0
7
(
2
0
0
9
)
0
1
3

Published by IOP Publishing for SISSA

Received: May 28, 2009

Accepted: June 10, 2009

Published: July 3, 2009

Unfolding mixed-symmetry fields in AdS and the

BMV conjecture: I. General formalism

Nicolas Boulanger,1 Carlo Iazeolla2 and Per Sundell

Scuola Normale Superiore

Piazza dei Cavalieri 7, 56126 Pisa, Italy

E-mail: nicolas.boulanger@sns.it, carlo.iazeolla@sns.it,

p.sundell@sns.it

Abstract: We present some generalities of unfolded on-shell dynamics that are useful in

analysing the BMV conjecture for mixed-symmetry fields in constantly curved backgrounds.

In particular we classify the Lorentz-covariant Harish-Chandra modules generated from

primary Weyl tensors of arbitrary mass and shape, and in backgrounds with general values

of the cosmological constant. We also discuss the unfolded notion of local degrees of

freedom in theories with and without gravity and with and without massive deformation

parameters, using the language of Weyl zero -form modules and their duals.

Keywords: Gauge Symmetry, Field Theories in Higher Dimensions

ArXiv ePrint: 0812.3615

1Work supported by a “Progetto Italia” fellowship. F.R.S.-FNRS associate researcher on leave from the
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1 Introduction

The theory of higher-spin gauge fields has witnessed two major achievements with Vasiliev’s

formulation of fully nonlinear field equations in four space-time dimensions [1] and more

recently in D space-time dimensions [2]. For a review and further developments, see [3, 4].

The equations are invariant under local non-abelian gauge symmetries based on an infinite-

dimensional, higher-spin Lie algebra containing the anti-de Sitter algebra so(2,D − 1) as

its maximal finite-dimensional subalgebra. The equations admit a simple exact solution in

which all fields vanish except a flat so(2,D−1) -valued connection. The classical perturba-

tive expansion around this solution yields an infinite tower of totally symmetric massless

spin-s fields with s = 0, 1, 2, 3, . . . . These carry a manifestly unitarizable representation

of the higher-spin algebra given by the tensor product of two scalar singletons [5], as was

initially checked in D = 4 [6, 7] and later examined in the context of higher-spin gauge

theory in various dimensions in [8–11].

Vasiliev’s formulation is manifestly diffeomorphism invariant without any explicit ref-

erence to a metric — although standard minimal spin-2 couplings arise (albeit together

with exotic higher-derivative couplings) in the limit in which the so(2,D − 1) -valued part

of the higher-spin connection one-form is treated exactly while its remaining spin s > 2

components become weak fields together with all curvature zero -forms. Its general covari-

ance is instead incorporated into the principle of unfolding [12–14] whereby the concepts

of space-time, dynamics and observables are derived from infinite-dimensional free dif-

ferential algebras [15–18]. Roughly speaking, unfolded dynamics is an inclusion of local

degrees of freedom into topological field theories described on-shell by flatness conditions on

generalized curvatures, and with the possibility of having infinitely many local zero -form

observables in the presence of a cosmological constant [19, 20].

Although a set of fully nonlinear equations of motion for non-abelian totally symmetric

gauge fields is now achieved, its extension to non-abelian mixed-symmetry gauge fields is

presently unknown. Such fields must be considered in flat space-time as soon as D > 6

and in constantly curved space-time as soon as D > 4 (unitary massless mixed-symmetry

– 1 –



J
H
E
P
0
7
(
2
0
0
9
)
0
1
3

two-row tensor fields in AdS4 decompose in the flat limit into topological dittos plus one

massless field in R
1,3 ).

As far as free tensor gauge fields in flat space-time of dimension D > 4 are concerned,

a Lagrangian formulation was proposed some time ago by Labastida [21]. The fact that the

corresponding equations of motion indeed propagate the proper massless degrees of free-

dom was understood later by analysing the corresponding generalized Bargmann-Wigner

equations for Weyl tensors, see [22] for a review and references.

A frame-like equivalent of Labastida’s formalism was given recently by Skvortsov [23,

24]. His unfolded system consists of a set of p -forms with p > 0 that are also traceless

Lorentz tensors whose symmetry type is determined by the Young diagram of the massless

field. The p -forms with fixed p constitute iso(1,D−1)-modules that are finite-dimensional

for p > 0 and infinite-dimensional for p = 0 . The system contains equations of motion in

various form degrees: at degree zero one finds the generalized Bargmann-Wigner equations

and in the highest form degree there is an equivalent equation of motion for a Labastida

field that follows from a first-order action [24]. This action is the direct generalization

to arbitrarily-shaped gauge fields of Vasiliev’s first-order action for Fronsdal fields in flat

space [25].

We stress the fact that for the purpose of counting the local degrees of freedom of a

gauge theory it is convenient to go from the on-shell gauge fields all the way down the Weyl

tensors which in the free limit are made up on-shell entirely out of gauge invariant degrees of

freedom. This approach is naturally incorporated into unfolded dynamics where potentials

and curvatures are treated on a more equal footing than in the standard approach to

field theory, though a completely democratic formulation off-shell leads to a rather radical

deviation from the standard field theory.

In the case of anti-de Sitter space-time, Metsaev [26, 27] has given the partially gauge-

fixed equations of motion for tensor fields ϕ(Λ;Θ) sitting in Lorentz irreps of arbitrary

shapes Θ. A remarkable property that he found is that, due to the background curvature,

residual gauge symmetries can only arise in one block of Θ at a time, associated to different

critical masses, unlike the case of flat spacetime where such residual symmetries arise

simultaneously in all blocks in the limit of vanishing mass. He also found that all of these

cases are nonunitary except if the gauge symmetry is symmetry is associated to the first

block. The on-shell gauge fields carry the lowest-weight so(2,D − 1)-irreps D(e0 ; Θ), and

in the unitary case e0 = s1 + D − 2 − h1 where h1 (s1) is the height (width) of the first

block of Θ.

Alkalaev, Shaynkman and Vasiliev (ASV) [28–30] have since then proposed unfolded

on-shell so(2,D − 1)-modules for the unitary case consisting of a frame-like h1-form

Uh1(Λ; Θ̂[h1]) sitting in the tensorial so(2,D − 1)-irrep of shape Θ̂[h1] obtained from Θ

by deleting one column from its first block and then adding one row of length s1 − 1 .

ASV also anticipated the existence of an infinite-dimensional Weyl zero -form module with

primary zero -form C(Λ;Θ) sitting in the Lorentz irrep of shape Θ obtained from Θ by

extending the first row of its second block to the width s1 of its first block, such that

the Weyl zero -forms should be related to each other by some differential equations giving

Bianchi identities for the expression of higher-spin curvatures in terms of Weyl tensors and

– 2 –
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in such a way that a systematic analysis of these relations would lead to the full unfolded

formulation of higher-spin dynamics for free mixed fields in AdSD .

The main purpose of the present paper is to provide the basic algebraic setting for

analysing the above proposal using unfolded free-field dynamics. In particular, in sec-

tion 4.3 we classify the Lorentz-covariant Harish-Chandra modules generated from pri-

mary Weyl tensors of arbitrary mass and shape, and in backgrounds with general values of

the cosmological constant. In section 4.4 we then discuss the unfolded integration of their

Bianchi identities, leading to gauge potentials in various form degrees as well as Stückelberg

fields. A corresponding1 set of unfolded equations of motion are derived in a companion

paper [31], from now on referred to as Paper II, by radially reducing Skvortsov’s equations

using an explicit oscillator realization.

Although the ASV-system has been designed with the purpose of propagating the

correct unitary degrees of freedom in AdSD , its flat limit is nonetheless subtle in the h1-

form sector [28–30]. On the other hand, on sheer group theoretic grounds, the conjectured

AdS Weyl zero -form module [28] has to decompose in the flat limit into a direct sum of

massless flat-space Weyl zero -form modules in accordance with the conjecture of Brink,

Metsaev and Vasiliev (BMV) [32]. Indeed, this follows manifestly from the realization of

the Weyl zero -form module to be given in Paper II.

The BMV conjecture [32] anticipates a field-theoretic realization of the degrees of

freedom in D(e0 ; Θ) in terms of an “unbroken” gauge field ϕ(Λ;Θ) plus a set of Stückelberg

fields {χ(Λ;Θ′)}. The latter break the gauge symmetries associated to the lower blocks of

Θ in such a way that the combined system has a smooth flat limit in which the total number

of local degrees of freedom is conserved and given by the direct sum ϕ(Λ=0;Θ)⊕
⊕

Θ′ χ(Λ=

0;Θ′) of irreducible gauge fields in flat spacetime. According to BMV, the set {Θ′} should

be given by the reduction of the so(D − 1)-tensor of shape Θ under so(D − 2) subject

to the condition that there are no reductions made in the block to which the AdS gauge

symmetry is associated.

The partially massive nature of mixed-symmetry gauge fields in AdSD [26, 27] and

the dimensional reduction leading to {Θ′} suggest that the Stückelberg fields can be in-

corporated explicitly via a suitable radial reduction of an unbroken gauge field in (D + 1)-

dimensional flat ambient space with signature (2,D − 1) . The above procedure is carried

out using the unfolded language in Paper II with the aforementioned result.

The present paper is organized as follows: section 2 contains some of our basic notation.

Section 3 provides some basic notions of unfolded on-shell dynamics. Section 4 presents

their application to free fields in constantly curved space-times. Here we also spell out our

strategy for unfolding arbitrary tensor fields in AdSD using codimension one foliations of

Skvortsov’s system that we shall then apply in Paper II to prove an unfolded on-shell version

of the BMV conjecture. In section 5 we present the treatment of local degrees of freedom

in unfolded dynamics, that in particular is required in order to define the smoothness of

the unfolded BMV limit. Finally come the conclusions in section 6.

1At the free level, a given infinite-dimensional Weyl zero -form module can be integrated in many different

ways. We shall work at the level of “minimal” unfolded systems whose variables are traceless Lorentz tensors

and that do no take into account any Hodge-duality extensions, as discussed in section 4.4.1.

– 3 –
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2 Notation and conventions

The direct sum of two vector spaces is written as A⊎B . If l is a Lie algebra (or more gen-

erally an associative algebra) then the decomposition of an l-module R under a subalgebra

k ⊆ l is denoted by R|k. A module R containing an invariant subspace I, an ideal, is said

to be either (i) indecomposable if the complement of I is not invariant in which case one

writes R|l = I D (R/I) ; or (ii) decomposable if both I and R/I are invariant in which

case one writes R|l = I ⊕ (R/I) .

Infinite-dimensional modules can be presented in many ways depending on how they are

sliced under various subalgebras. If k ⊂ l one refers to finite-dimensional k-irreps with non-

degenerate bilinear forms as k-types, which we denote by Θα, Θαi
etc. labeled by indices

α, αi etc.. Correspondingly, if there exists a slicing R|k consisting of k-types then we refer

to such expansions as an k-typesetting of R. In particular, we refer to finite-dimensional

Lorentz-irreps as Lorentz types (that will be tensorial in this paper). In unfolded dynamics

one may view typesetting as local coordinatizations of infinite-dimensional target spaces

for unfolded sigma models. We set aside issues of topology.

Young diagrams, or row/column-ordered shapes, with mi cells in the ith row/column,

i = 1, . . . , n are labeled by (m0 , . . . ,mn+1) and [m0 , . . . ,mn+1] where mi > mi+1 and

m0 := ∞ and mn+1 := 0 . We let PΘ denote Young projections on shape Θ . We also use

the block-notation

([s1 ;h1 ], [s2 ;h2 ], ..., [sB
;h

B
]) := (m1, · · · ,mh1︸ ︷︷ ︸

=s1

,mh1+1, . . . ,mh1+h2︸ ︷︷ ︸
=s2

. . . ) , (2.1)

for a shape with B rectangular blocks of lengths s
I

> s
I+1

and heights h
I

> 1, I =

1, 2, ..., B . The space of shapes S forms a module, the Schur module, for the universal

Howe-dual algebra sl(∞) , obtained as a formal limit of sl(ν±) acting in the spaces S ±
ν±

of

shapes with total height p
B

:=
∑B

I=1 h
I

6 ν+ (sl(D)-types in symmetric bases) or widths

s1 6 ν− ((sl(D)-types in anti-symmetric bases). Extension to traceless Lorentz tensors

leads to Howe-dual algebras sp(2ν+) and so(ν−) , with formal limits sp(2∞) and so(2∞),

respectively.

The Schur module S can be treated explicitly by using “cell operators” βa,(i) and β̄a,(i)

defined (see Paper II) to act faithfully in S by removing or adding, respectively, a cell

containing the sl(D)-index a in the ith row. Schematically,

β̄a,(i)(m1, . . . ,mi, . . . ,mn) = (m1, . . . ,mi + 1, . . . ,mn) ,

βa,(i)(m1, . . . ,mi, . . . ,mn) = (m1, . . . ,mi − 1, . . . ,mn) .

Similarly, βa,[i] and β̄a,[i] , respectively, remove and add an a-labeled box in the ith column.

We let ĝ denote the real form of so(D+1) with metric ηAB = diag(σ, ηab) where σ = ±1

and ηab = (−1, δrs) , and with generators M̂AB obeying the commutation rules

[M̂AB , M̂CD] = 2i ηC[BM̂A]D − 2i ηD[BM̂A]C . (2.2)

– 4 –
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We let m := so(1,D − 1) and s := so(D − 1) denote the “canonical” Lorentz and spin

subalgebras, respectively, with generators Mab and Mrs . We let gλ := m D p where p is

spanned by the transvections2 obeying

[Pa, Pb] = iλ2Mab , [Mab, Pc] = 2iηc[bPa] . (2.3)

If λ2 = 0 then gλ
∼= iso(1,D−1) and if λ2 6= 0 then gλ

∼= ĝ with σ = −λ2/|λ2| , the isometry

algebras of AdSD (σ = −1) and dSD (σ = 1) with radius LAdS := L and LdS := −i L ,

respectively, where L := λ−1 is assumed to be real for AdSD and purely imaginary for

dSD . The gλ-valued connection Ω and curvature R are defined as follows

Ω := e + ω := −i(ea Pa + 1
2 ωab Mab) , (2.4)

R := dΩ + Ω2 = −i
[
T aPa + 1

2(Rab + λ2eaeb)Mab

]
, (2.5)

T a := dea + ωa
b eb , Rab := dωab + ωa

c ωc
b , (2.6)

and are associated with a cosmological constant Λ = − (D−1)(D−2)
2 λ2 . The Lie derivative

along a vector field ξ is Lξ := d iξ + iξ d and we use conventions where the exterior total

derivative d and the inner derivative iξ act from the left. If the frame field ea is invertible

we define the inverse frame field θa by iθaeb = ηab .

We use weak equalities ≈ to denote equations that hold on the constraints surface.

In the maximally symmetric backgrounds R ≈ 0 the connection Ω can be frozen to a

fixed background value, breaking the diffeomorphisms down to isometries δǫ(ξ) with Killing

parameters ǫ(ξ) = iξ(e+ω) obeying δǫ(ξ)(e+ω) ≈ Lξ(e+ω) = 0 (one has Lξe
a = δǫ(ξ)e

a +

iξT
a where δǫ(ξ)e

a = ∇ǫa − ǫabeb with ǫa = iξe
a , ǫab = iξω

ab and ∇ := d − i
2 ωabMab ).

We use D±(±e0 ; Θ0) to denote lowest-weight (+) and highest-weight (−) modules of

gλ that are sliced under its maximal compact subalgebra h ∼= so(2)⊕so(D−1) into h-types

|e; θ〉± . In compact basis, the so(2,D − 1) algebra reads

M0r = 1
2 (L+

r + L−
r ) , Pr = iλ

2 (L+
r − L−

r ) , E = λ−1P0 , (2.7)

[L−
r , L+

s ] = 2iMrs + 2δrsE , [E,L±
r ] = ±L±

r , [Mrs, L
±
t ] = 2iδt[sL

±
r] . (2.8)

By their definition, the modules D±(±e0 ; Θ0) are the irreps obtained by factoring out

all proper ideals in the generalized Verma module generated from a unique lowest-energy

(+) or highest-energy (−) state | ± e0 ; Θ0〉
± with E-eigenvalue ±e0 . We let D(e0 ; Θ0) :=

D+(e0 ; Θ0) and |e; θ〉 := |e; θ〉+. The generalized Verma module is irreducible for generic

values of e0 , i.e. singular vectors arise only for certain critical values related to Θ0.

In unfolded field theory the mass-square M2 of an unfolded Lorentz tensor field φ(Θ)

(dynamical field, Weyl tensor, ...) carrying an gλ-irrep (Λ 6= 0) with representation ρ, is

the eigenvalue of

− ρ(P aPa) ≡ λ2ρ

(
1

2
MABMAB −

1

2
MabM

ab

)
. (2.9)

2We are here abusing a standard terminology used in the context of symplectic algebras, the only point

being to make clear the distinction between the cases where the generators {Pa} are commuting or not.

– 5 –
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In the case of Λ < 0 one sometimes deals with harmonic expansions involving lowest-weight

spaces where

C2 [gλ|D(e0 ; Θ0)] = e0 [e0 − 2(ǫ0 + 1)] + C2 [s|Θ0 ] , s := so(D − 1) , ǫ0 :=
1

2
(D − 3)

(2.10)

leading to the mass formula

L2M2 = e0 [e0 − 2(1 + ǫ0)] + C2 [s|Θ0 ] − C2 [m|Θ] . (2.11)

We let T
±

(i)(Θ
±) denote iso(1,D − 1)-irreps with (a) largest and smallest m-types

Θ+ and Θ−, respectively; and (b) translations represented by ρ+
(i)(Pa) = βa,(i) and

ρ−(i)(Pa) = γ̄a,(i) (the trace-corrected cell creation operator) for fixed i > 1 . As a spe-

cial case T
−

(1)(Θ
−) ∼= T ∗(Λ=0;M 2=0;Θ−) , the dual of the twisted-adjoint representation

containing a strictly massless primary Weyl tensor.3 We also let T
±

(0)(Θ) := Θ, the irrep

consisting of a single m-type Θ annihilated by Pa .

The translations are nilpotent in T
±

(i)(Θ
±) for i > 2 and in T

+
(1)(Θ

+). Factoring out

ideals yields “cut” finite-dimensional modules T
±

(i),N (Θ±) of “depth” N > 0 such that
(
ρ±(i),N (Pa)

)n

≡/ 0 iff n 6 N . For i > 2 the duals
(
T

±
(i)(Θ

±)
)∗

∼= T
∓

(i),N (Θ′∓) for some N

and Θ′∓ determined from the shape of Θ± . In particular, (T ±
(i)(Θ

±))∗ ∼= T
∓

(i)(Θ
∓) iff the

ith row does not form a block of its own in Θ+ nor Θ− .

The iso(1,D−1)-irreps T
±

(i)(Θ
±) with i > 2 and T

+
(1)(Θ

+) are contractions of so(2,D−

1)-types as follows: the so(2,D − 1)-type Θ̂ with its canonical representation M̂AB is

isomorphic to twisted representations Θ̂±
(i),κ;λ with canonical ρ±(i),κ;λ(Mab) := M̂ab and non-

canonical ρ+
(i),κ;λ(Pa) := λ ξ̂BM̂Ba + κβa,(i) and ρ−(i),κ;λ(Pa) := λ ξ̂BM̂Ba + κ γ̄a,(i) where

ξ̂2 = −1 (these are representations for [Pa, Pb] = iλ2Mab for all values of κ, λ and i). The

limit λ → 0 at fixed κ yields a reducible iso(1,D − 1) representation that decomposes into

T
±

(i)-plets if κ 6= 0 and T
+

(0)-plets if κ = 0 .

3 Generalities of unfolded on-shell dynamics

3.1 Preamble: free differential algebras and unfolded dynamics

The notion of unfolded dynamics was introduced by Vasiliev [12–14] who realized that

the full dynamics of general gauge theories can be cast into a free differential algebra for

locally defined variables of form degree p > 0, including infinite towers of “twisted-adjoint”

zero -forms.

The topological usage of free differential algebras dates back to the works of Cartan and

de Rham, and also of Chevalley and Eilenberg [34] who studied equivariant cohomologies

on manifolds carrying actions of Lie groups, leading to the notion of Chevalley–Eilenberg

cocycles that will be important in what follows. The usage of cocycles to probe more

general topological spaces was then developed by Sullivan [15], leading to the notion of the

3In a similar context, see also the very recent work [33].

– 6 –
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Sullivan map X 7→ S(X) sending a topological manifold X to a free differential algebra

S(X) in strictly positive form degree whose cocycles capture various topological features

of X. Moreover, as a lemma, Sullivan characterized a free differential algebra in strictly

positive degree (and with each degree being finite-dimensional) as being the semi-direct

sum of a “minimal” algebra with nonlinear cocycles, and a “contractible” ideal with linear

cocycles.

Sullivan’s ideas were then transformed to fit the context of field theories where (i)

locally defined variables carry local degrees of freedom; (ii) the local translations can be

softly broken leading to the identification of the vielbein as the soldering one-form; and (iii)

observables are given by integrals of globally defined, conserved, composite variables. An

initial step was taken by d’Auria, Fre and van Nieuwenhuizen [16–18, 35] who adapted free

differential algebras to supergravities albeit within a hybrid context, aimed at the standard

Lagrangian formulation of lower-derivative theories, without infinite towers of zero -forms,

and where not all on-shell properties of the dynamics are encoded into the algebra.

Later Vasiliev realized that by abandoning the standard Lagrangian formulation and

introducing infinite towers of zero -forms all the on-shell properties of general (possibly

higher-derivative) field theories (with local degrees of freedom) can be systematically en-

coded into first-order equations of motion on universal base manifolds (containing standard

spacetime as a submanifold). The resulting unfolded dynamics thus consists of two “lay-

ers” of free differential algebras: fundamental algebras consisting of locally defined p-form

variables with p > 0 (including infinite towers of zero -forms) constituting the independent

fields; and observable algebras consisting of globally defined, composite p-forms with p > 0

(possibly also including infinite towers of zero -forms) whose integrals over cycles constitute

conserves charges that can be used as observables in (noncompact) gauge theory.

3.2 Overview

Free differential algebras are sets {Xα} of a priori independent variables that are differ-

ential forms obeying first-order equations of motion whereby dXα are equated on-shell to

algebraic functions, say −Qα(X), of all the variables expressed entirely using the exterior

algebra, viz. Rα := dXα + Qα(X) ≈ 0 with Qα(X) :=
∑

n Qα
β1...βn

Xβ1 ∧ · · · ∧ Xβn (the

symbol ∧ will be omitted henceforth and we use weak equalities for equations that hold

on-shell). The nilpotency of d requires Q := Qα∂α, an odd vector field of degree one on the

space of differential forms, to be nilpotent, that is Q2 ≡ 0 or Qβ∂βQα ≡ 0 . As a result,

the constraint surface {Rα ≈ 0} is left invariant under generalized gauge transformations

δǫX
α = dǫα − ǫβ∂βQα.

The Q - cohomology [36] is related to a special class of gauge-invariant charges,

namely integrals of algebraic functions C [X] that are on-shell closed, that is dC ≈ 0, and

globally defined on the base manifold. Exact zero -form charges have been given [19, 20]

for higher-spin gauge theories. These charges are non-local on-shell, i.e. functions on the

infinite jet space of the physical on-shell fields. Their existence depends crucially on the

presence of a massive deformation parameter (the cosmological constant Λ in the case

of higher-spin gauge theory). Zero-form charges are, roughly speaking, unfolded analogs
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of topological vertex operators (with vanishing conformal weights) in two-dimensional

topological theories.

Invariants C of form-degree > 1 require a split of the variables Xα with form-degrees

pα > 1 into a generalized vielbein one-form and a fiber connection. The latter “gauges”

a subalgebra of the free-differential gauge algebra that leaves C identically invariant and

whose parameters can therefore be taken to be locally defined. The remaining local trans-

lations, which do not leave C invariant, are instead “softly broken” and converted by

the vielbein into infinitesimal diffeomorphisms along the base manifold, which leave the

charges invariant. This facilitates the geometric realization of non-compact gauge symme-

tries in a suitable “spacetime” with local properties following algebraic properties of the

free differential algebra.

Another consequence that we shall exploit here is that the local degrees of freedom

of a classical free differential algebra are given by the on-shell values of its zero -form

charges. These are gauge- invariant integration constants that parameterize the space of

field configurations that cannot be gauged away locally.

Perturbative expansions around classical solutions yield linearized Q -structures δQ =

(σ0)
α
βδXβ∂α where δXα are linearized fields and the background-dependent matrix (σ0)

α
β

obeys a non-abelian “flatness” condition (see eq.(4.12)). The zero -form charges for the

free theory is coordinatized by the integration constants for all δXα of form degree pα = 0

that cannot be gauged away by means of Stückelberg shift symmetries. These zero -forms

constitute a representation of the free-differential gauge algebra referred to as the Weyl

zero -form module.

In expansions around maximally symmetric backgrounds with isometry algebras g ,

the Weyl zero -form module is built from g-irreps that are infinite-dimensional for generic

masses (including critically massless cases in backgrounds with non-vanishing Λ) in which

case we refer to them as twisted-adjoint g-modules. The twisted-adjoint zero -forms consist

of primary Weyl tensors — such as scalar fields φ, Faraday tensors Fab and spin-2 Weyl

tensors Cab,cd — and secondary, or descendant, Weyl tensors given on-shell by derivatives

of the primary Weyl tensors.

In the case of non-vanishing Λ there exist special “subcritical” masses for which there

arise finite-dimensional (non-unitarizable) Weyl zero -form modules. These are topological

sectors with finite sets of integration constants. The basic example is the scalar field φ

obeying (∇2−M2)φ ≈ 0 on the D-sphere minus a point (or some points) where singularities

are tolerated. The harmonic expansion of φ yields infinite-dimensional so(D + 1) modules

except for M2 = −ℓ(ℓ+D−3) (ℓ = 0, 1, . . . ) where φ contains the totally symmetric rank-ℓ

tensor.

The Weyl zero -forms obey various Bianchi identities: the primary Weyl tensor may

obey independent primary identities, which requires vanishing mass in flat space and critical

mass if Λ 6= 0, while the descendant Weyl tensors always obey secondary identities that

follow from either primary identities or the fact that d2 ≡ 0. The local integration of Bianchi

identities introduces new modules in form-degrees p > 0 consisting of (i) dynamical fields

in various “dual pictures”; (ii) auxiliary fields; (iii) contractible Stückelberg pairs; and (iv)

finite-dimensional topological Weyl zero -forms.
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We stress that, besides the zero-modes in the zero -forms in (iv), the integration does

not introduce any new local on-shell degrees of freedom. Put differently, the dynamical

fields, although being algebraically independent variables on-shell, do actually “propagate”

local degrees of freedom only if the unfolded system contains a corresponding twisted-

adjoint infinite-dimensional Weyl zero -form module. In particular, a dynamical field is

unitarizable only if there exists an equivariant map from its associated (manifestly Lorentz-

covariant) twisted-adjoint module to a unitary compactly sliced representation of g.

A dynamical field that is not sourced by a Weyl tensor may be referred to as “frozen”.

Such fields may acquire finite “expectation values” that break the unfolded gauge sym-

metries, including diffeomorphisms. The basic example is a background vielbein ea and

Lorentz connection ωab, obeying the manifestly diffeomorphism invariant “topological”

spin-2 field equations T a ≈ 0 and Rab + λ2eaeb ≈ 0 , that on the one hand imply Ein-

stein’s equation for gµν := eµ
aeν

bηab, and on the other hand imply that Cab,cd ≈ 0. The

diffeomorphisms are thus broken spontaneously by finite solutions for eµ
a, which is a re-

mark that of course applies equally well to the case where Cab,cd is no longer constrained

on-shell. Indeed, although at the expense of introducing a heavier formalism which lies

beyond the scope of this paper, it is possible to treat unfolded dynamics perturbatively in

a Hamiltonian system with an expansion around the manifestly diffeomorphism invariant

“empty-space” vacuum ea = 0.

The aforementioned linearized Q -structure δQ = σ0δX extends to a “triangular”

gauge/Bianchi module consisting of gauge parameters, fields, curvatures and Bianchi iden-

tities, organized into modules of the gauge algebra and the (nilpotent) algebra of massive

shift symmetries. In maximally symmetric backgrounds the linearized field content can

be assigned an additional perturbatively defined N-valued quantum number referred to

as the grade, that essentially counts the number derivatives used to express the auxiliary

fields in terms of the dynamical fields. Correspondingly, the component of σ0 of lowest

grade, namely (σ0)
− of grade −1, extends to a nilpotent matrix σ− acting on the trian-

gular module, now a bi-graded complex under the action of σ− and the Lorentz-covariant

exterior derivative ∇ , with (grade, degree) given by (−1,+1) and (0,+1), respectively. Re-

markably, the σ−-cohomology fetches dynamical fields, equations of motion, corresponding

differential gauge parameters and Bianchi/Noether identities [23, 36, 37].

In what follows we shall exhibit in more detail some of the topics discussed above,

starting with more general background independent features in the present section 3, and

pointing to key differences in the behavior of massless fields in flat versus constantly curved

spacetimes in section 4 after which we spell out the BMV conjecture in Subsection 4.5. We

shall then digress in more detail into the notion of local degrees of freedom in unfolded

dynamics in section 5.

3.3 On-shell sigma-models and Q-structure

The on-shell formulation of unfolded dynamics is in terms of a sigma-model with world-

volume M covered by coordinate charts U and target space R coordinatized by {Xα}α∈S
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where S is an indexation set. The sigma-model map f : M → R induces the pull-back

f∗X :=
∑

p6dimM

Xp , Xp :=
∑

α∈S
pα= p

f∗XαΘα ∈ Ωp(U) ⊗ T (p) , (3.1)

where Ωp(U) is the space of p -forms on U , Θα are types, finite-dimensional vector spaces,

and

T (p) :=
∑

α∈S
pα= p

Θα . (3.2)

We suppress f∗ when confusion cannot arise and use the notation Xα ≡ Xαpα
≡ Xpα(Θ∗α).

We use ≈ to denote equations that hold on-shell. The field equations then read

Rα := dXα + Qα(Xβ) ≈ 0 , (3.3)

where Rα are referred to as the generalized curvatures, and Q := Qα ∂
∂Xα = Qα∂α is an

identically nilpotent vector field of degree 1,

Q2 =
1

2
{Q,Q} =

1

2
LQQ ≡ 0 ⇔ Qα∂αQβ ≡ 0 , (3.4)

referred to as the Q -structure. In our conventions the exterior derivative d and the vector

fields ∂α = ∂
∂Xα act from the left.

The Q-structure in principle contains all the local information about the classical

equations of motion in the “duality picture” defined by the coordinates X. More generally,

additional contractible and dual sectors can be added, as we shall discuss below.

The generalized curvatures have the following two key properties:

(i) The generalized Bianchi identities are

Zα := dRα − Rβ∂βQα ≡ 0 . (3.5)

Note that the extended system consisting of the variables {W I} := {Xα , Rα} with struc-

ture functions {QI} = {Qα(X) , Qα
1 (X,R)} , Qα

1 (X,R) := −Rβ∂βQα , is consistent. Put in

equation,

QJ∂JQI ≡ 0 . (3.6)

In order to verify this identity, we split the left-hand side into two groups, the first

group reproducing Qβ∂βQα which is identically zero by assumption, the other yielding

[Qβ ∂
∂Xβ + Qβ

1
∂

∂Rβ ]Qα
1 (X,R) . The latter expression is identically zero by using the defini-

tion of Qα
1 (X,R) and by making use of the identity

∂αQγ∂γQβ + (−1)αQγ∂γ∂αQβ ≡ 0 (3.7)

which is obtained upon differentiating Qβ∂βQα ≡ 0 and where we use the notation

(−1)α := (−1)pα .
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(ii) The constraint surface Σ ≡ Rα ≈ 0 is invariant under Cartan gauge transformations

δǫX
α := Gα := dǫα − ǫβ∂βQα , δǫR

α = (−1)βǫβRγ∂γ∂βQα , (3.8)

where the parameters ǫα ∈ Ωpα−1(U) ⊗ Θα (:= 0 if pα = 0 ). The closure relation reads

[δǫ1 , δǫ2 ]X
α = δǫ12X

α + (−1)γǫβ
1 ǫγ

2Rδ∂δ∂γ∂βQα , ǫα
12 := (−1)β+1ǫβ

1 ǫγ
2∂γ∂βQα . (3.9)

The symmetry Gα(ǫ,X) = Zα(R,X)|Rα→ǫα actually extends to the full “tower” of

higher Bianchi identities and the “basement” of deeper gauge symmetries, both of which

are related to one and the same “triangular” extension of (R, Q) to be described in more

detail below.

3.4 Contractible and dual cycles

Since there is a gauge parameter for each p -form with p > 0 , all local degrees of freedom

of the system are actually contained in the space of zero -forms. A consequence of this

basic lemma is that if (R, Q) admits a consistent truncation to (R′, Q′), then the systems

are equivalent locally in U ⊂ M provided the complement R \ R′ does not contain “too

many” zero -forms.

We refer to S = R \ R′ as a contractible cycle if S contains finitely many zero -forms

and if for Z ∈ S and X ′ ∈ R′ it is the case that

contractible cycle : RX′

= dX ′ + QX′

(X ′, Z) , RZ = dZ + QZ(X ′, Z) , (3.10)

QZ(X ′, 0) = 0 . (3.11)

Then there exists a consistent truncation of R to R′ in which the elements in S are trivi-

alized (i.e. setting Z = 0 is one valid solution to the flatness conditions). More generally,

we refer to S as a perturbatively contractible cycle in the background
(0)

X ′ if

RX′

(
(0)

X
′ + δX ′, δZ

)
= dδX ′ + δX ′ · ∂X′QX′

(
(0)

X
′, 0

)
+ δZ · ∂ZQX′

(
(0)

X
′, 0

)
+ O(δX2) ,

(3.12)

RZ

(
(0)

X ′ + δX ′, δZ

)
= dδZ + δZ · ∂ZQZ

(
(0)

X ′, 0

)
+ O(δX2) , (3.13)

which we denote by

R =





R′
E S if ∂ZQX′

(
(0)

X ′, 0

)
6= 0 ,

R′ ⊕ S if ∂ZQX′

(
(0)

X ′, 0

)
= 0 ,

(3.14)

referred to as indecomposable and reducible contractible cycles, respectively. A perturba-

tively contractible cycle decomposes into

contractible pairs (χ, z) : dχ+z ≈ 0 , dz ≈ 0 ; closed forms y : dy ≈ 0 . (3.15)
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Contractible pairs and closed forms with degree p(y) > 0 carry no local degrees of freedom,4

while a closed form with p(y) = 0 carries one local degree of freedom (a constant valued in

the type which contains y).

Instead, if

(i) R contains a subset R′ that forms a free differential algebra of its own;

(ii) the complement R̃ = R \ R′ contains finitely many zero -forms; and

(iii) there does not exist a consistent truncation from R to R′ ,

then we shall refer to R̃ as a dual cycle. Thus, if X ′ ∈ R′ and X̃ ∈ R̃ then

dual cycle : RX′

= dX ′ + QX′

(X ′) , R
eX = dX̃ + Q

eX(X ′, X̃) , (3.16)

Q
eX(X ′, 0) 6= 0 , (3.17)

which we write as

R = R′
D R̃ . (3.18)

In general, a given submodule R′ can be “glued” to several dual cycles (see figure 1).

If the free differential algebra (R, Q) is a nonlinear deformation of a Lie algebra g and

a set of its representations, then its linearization around an g-invariant “vacuum” equips

R with the structure of a g-module, that is, if X =
(0)

X +δX where
(0)

X contains a g-valued

Maurer–Cartan form in degree 1, then the fluctuation fields δX span a g-module isomorphic

as a vector space to R. This g-module is indecomposable (as a Lie-algebra module) if the

full Q-structure contains dual or indecomposable contractible cycles. Indecomposable g-

modules are characterized by “gluings” of g-submodules via Chevalley–Eilenberg cocycles.

Their existence is determined by the properties of g and of the g-submodules.

In particular, if g is semi-simple, as in the case of non-vanishing cosmological constant,

then any finite-dimensional g-module is fully reducible, as follows from a well-known the-

orem due to Weyl, or equivalently, from its dual free differential algebra version due to

Chevalley and Eilenberg [34]. This means that two g-submodules can be glued only if one

of them is infinite-dimensional.

On the other hand, if g is reductive then there are no such restrictions anymore in

the case of finite-dimensional modules. Indeed, such iso(D − 1, 1)-cocycles arise in the

unfolding of mixed-symmetry massless fields in flat spacetime [23], as we shall discuss in

sections 4.4.4 and 4.4.5, and implement explicitly using oscillators and cell operators in

Paper II.

3.5 Couplings and homotopy Lie algebras

Expanding the structure functions Qα in Xβ yields graded n-ary products, viz.5

Qα(X) =
∑

n>0

Qα
(n)(X) , Qα

(n)(X) =
∑

pβ1
+···+pβn=pα

Qα
β1...βn

Xβ1 · · ·Xβn , (3.19)

4Contractible pairs may become non-trivial at the quantum level due to ghost zero-modes.
5More formally, the n-ary products Q(n) ∈ R ⊗ R∗ ∧ · · · ∧ R∗ : R ∧ · · · ∧ R → R.
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- degree

?

grade

•

•

•

•

•

•

•

C

ϕ1 ϕ2

C0





R̃1









R̃2

Figure 1. An unfolded module of the form R = R′
D R̃2 where (i) R′ = C0

D R̃1 is a submodule

consisting of a Weyl zero -form module C0 with primary Weyl tensor C and dual subcycle R̃1

(“potential module”) with dynamical field ϕ
1
; and (ii) R̃2 is a dual cycle (“dual potential module”)

with dynamical field ϕ
2

(“dual potential’). The dashed lines indicate “gluings” by non-trivial

generators in σ−

0
(see section 4.2) whose existence conditions depend on the nature of the underlying

symmetry Lie algebra g (see section 3.4).

whose structure coefficients obey generalized graded Jacobi identities

∑

n1+n2=n

(n2 + 1)Qβ
[γ1...γn1 |

Qα
β|γn1+1...γn] ≡ 0 , (3.20)

defining a homotopy Lie algebra (see e.g. [38] and references therein and also [15] for the

classification and topological usage of finite-dimensional free differential algebras containing

no zero -forms).

Splitting {Xα}α∈S (R) into 0-forms {Φα0

}, 1-forms {Aα1

} and higher-degree forms

{Bαp

} with p > 2 , assuming that Qα
(0) = 0 (i.e. that there are no field-independent

(pα + 1)-forms), and expanding the generalized curvatures to first order in Bαp

yields

Rα0

= dΦα0

+ Tα0

β1 (Φ)Aβ1

, (3.21)

Rα1

= dAα1

+ fα1

β1
1β1

2
(Φ)Aβ1

1 Aβ1
2 + Nα1

β2 (Φ)Bβ2

, (3.22)

Rαp

= dBαp

+ Tαp

β1,γp(Φ)Aβ1

Bγp

+ Nαp

βp+1(Φ)Bβp+1

+ Σαp

β1
1 ...β1

p+1
(Φ)Aβ1

1 · · ·Aβ1
p+1 (3.23)

+

p−1∑

q=2

Σαp

β1
1 ...β1

p+1−q,γq(Φ)Aβ1
1 · · ·Aβ1

p+1−qBαq

+ O(B2) . (3.24)
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Expanding further in zero -forms yields

Rα0

= DΦα0

+ Nα0

β1 Aβ1

+ O(AΦ2) , (3.25)

Rα1

= Fα1

+ Nα1

β2 Bβ2

+ Σα1

β1
1β1

2 ;γ0A
β1
1 Aβ1

2 Φγ0

+ O(A2Φ2) + O(BΦ) , (3.26)

Rαp

= DBαp

+ Nαp

βp+1B
βp+1

+ Σαp

β1
1 ...β1

p+1
Aβ1

1 · · ·Aβ1
p+1 + Σ

αp

β1
1 ...β1

p+1;γ
0A

β1
1 · · ·Aβ1

p+1Φγ0

+

p−1∑

q=2

Σαp

β1
1 ...β1

p+1−q;γqAβ1
1 · · ·Aβ1

p+1−qBγq

+ O(Ap+1Φ2,ΦB,B2) , (3.27)

where the f and Σ-couplings are generalized (integrated) Chevalley–Eilenberg cocycles, the

N -couplings represent massive deformations, and where the Yang-Mills-like constructs

Fα1

:= dAα1

+ fα1

β1
1β1

2
Aβ1

1 Aγ1
2 , (3.28)

DΦα0

:= dΦα0

+ (Tβ1)α
0

γ0 Aβ1

Φγ0

, (3.29)

DBαp

:= dBαp

+ (Tβ1)α
p

γp Aβ1

Bγp

. (3.30)

The higher-order couplings in (3.25)–(3.27) contain zero -form deformations, including de-

formations by the physical scalar fields, which we shall refer to as generalized curvature

couplings. The generalized Jacobi identities imply that

2 f δ1

[α1β1| f
κ1

δ1|γ1] + Nκ1

α2 fα2

α1β1γ1 = 0 , (3.31)

2 (T[α1|)
α0

β0 (T|β1])
β0

γ0 + fγ1

α1β1(Tγ1)α
0

γ0 + Nβ0

[α1(Pβ1])
α0

β0γ0 = 0 , (3.32)

2 (T[α1|)
αp

γp (T|β1])
γp

βp + fγ1

α1β1(Tγ1)α
p

βp + N -terms = 0 . (3.33)

If Nα1

α2 = 0 and Nα0

α1 = 0, or more generally, if there exists a projector P
α1

β1 such that

P
α1

β1 Nβ1

α2 = 0 , P
β1

α1 Nα0

β1 = 0 , (11 − P)α
1

β1fβ1

γ1δ1
P

γ1

ε1
= 0 and P

α1

β1fβ1

γ1δ1
(11 − P)γ

1

ε1
= 0 , then the

1-form Ãα1

:= P
α1

β1Aβ1

, which we shall refer to as the connection, takes values in a Lie

algebra g̃ which we shall refer to as the gauge Lie algebra.

We refer to the free differential algebra as D-dimensionally Riemannian if: i) g̃ ⊃ g =

m D p where m ∼= so(D; C) and p are D-dimensional transvections; ii) R|m consists of

m-tensors; and iii) the m-valued connection ω occurs in Rω only via the Riemann tensor

R := dω +ω2 and in the remaining generalized curvatures only via the covariant derivative

∇ := d + ω . The types Θα can then be taken to be irreducible Lorentz tensors which we

label by Young diagrams, sometimes referred to as shapes, and we shall say the Xα sits in

the m-type Θα .

3.6 Triangular gauge-Bianchi module

Repeated exterior differentiations of the Bianchi identity (3.5) yield an infinite tower of

Bianchi identities

Zα
q+1 := dZα

q + Qα
q ({Zβ

q′}
q
q′=0) ≡ 0 , q = 1, 2, . . . , (3.34)
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which we refer to as higher if q > 2 and where Zα
2 := Zα , Zα

1 := Rα and Zα
0 := Xα . The

structure functions are given by Qα
0 := Qα together with the recursion relation

Qα
q = −

q−1∑

q′=0

Zβ
q′+1∂

q′

β Qα
q−1 , q = 1, 2, . . . , (3.35)

where ∂q′

α := ∂/∂Zα
q′ (q′ > 0 ). By virtue of the reasoning used in order to obtain (3.6), the

structure functions obey the integrability conditions

q∑

q′=0

Qβ
q′∂

q′

β Qα
q ≡ 0 . (3.36)

Indeed, with Qα(Xβ) =: Qα
0 (Xβ) obeying Qβ∂βQα ≡ 0 , the Bianchi identity dRα ≡

Rβ∂βQα can be rewritten as Zα
2 ≡ 0 provided Qα

1 = −Zβ
1 ∂βQα

0 . This function, as we

have shown with (3.6), obeys the integrability condition (Qβ
0∂0

β +Qβ
1∂1

β)Qα
1 = 0 . Induction

implies that

dZα
q+1 ≡

q∑

q′=0

(Zβ
q′+1 − Qβ

q′)∂
q′

β Qα
q =

q∑

q′=0

Zβ
q′+1∂

q′

β Qα
q , (3.37)

amounting to Zα
q+2 ≡ 0 provided that Qα

q+1 = −
∑q

q′=0 Zβ
q′+1∂

q′

β Qα
q , which is the recursion

formula (3.35).

Thus, the tower of Bianchi identities is related to the triangular Q -structure (T+, Q+)

coordinatized by variables W α
q (q > 0) in

T+ :=
⊕

q∈N

Rq , Rq := Ωpα+q(U) ⊗ T (p) , (3.38)

where T (p) is defined in (3.2). The odd integrable vector field

Q+ :=
∑

q∈N

Qα
q ∂q

α , (Q+)2 ≡ 0 , (3.39)

where the structure functions Qα
q = Qα

q ({W β
q′6q}) (q > 0) are given by

Qα
q = (−1)q

q∏

q′=1

q′∑

q′′=1

L
(−1)
q′′ Qα = (−1)qPq({ℓq′}

q
q′=1)Q

α , (3.40)

where Pq are polynomials in ℓq := L
(−q)
q , for L

(n)
q := W α

q ∂q+n
α which have Grassmann

parity (−1)n and obey

L(m)
q L

(n)
q′ − (−1)mnL

(n)
q′ L(m)

q = δq′,q+mL(m+n)
q − (−1)mnδq,q′+nL

(m+n)
q′ , (3.41)

L(m)
q Qα = δq,−mℓqQ

α . (3.42)
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In particular, L
(−1)
q ℓq−1 = (−1)q−1ℓq−1L

(−1)
q + ℓq , ℓqℓq′ = (−1)qq′ℓq′ℓq and one finds

P1 = ℓ1 , P2 = ℓ2 , P3 = ℓ1ℓ2 + ℓ3 , P4 = (ℓ2)
2 + ℓ4 , (3.43)

P5 = ℓ1((ℓ2)
2 + ℓ4) + 2ℓ3ℓ2 + ℓ5 , P6 = (ℓ2)

3 + 3ℓ2ℓ4 + ℓ6 , (3.44)

P7 = ℓ1((ℓ2)
3 + ℓ6) + 3ℓ3(ℓ2)

2 + 3ℓ3ℓ4 + ℓ7 , (3.45)

P8 = (ℓ2)
4 + 6(ℓ2)

2ℓ4 + 4ℓ2ℓ6 + 3(ℓ4)
2 + ℓ8 . (3.46)

The tower of Bianchi identities arises upon imposing the constraints

W α
q = (d + Q+)W α

q−1 for q = 1, 2, . . . ⇒ W α
q ≡ 0 for q = 2, 3, . . . , (3.47)

and identifying W α
q = Zα

q .

If pα > 2 the Cartan gauge symmetry (3.8) is accompanied by reducibility transfor-

mations

δǫα
q+1 = dǫq + (−1)q ǫβ

q ∂βQα , q = −2 ,−3 , . . . ,−pα (3.48)

such that

δǫq(δǫ
α
q+1) = d (δǫα

q ) + (−1)q δǫβ
q ∂βQα = (−1)β+1ǫβ

q−1R
δ∂δ∂βQα ≈ 0 . (3.49)

Note that, in general, one can write the transformations that leave invariant the constraint

surface Σ as well as more shallow gauge orbits, viz.

δǫα
q = Gα

q := dǫα
q−1 + Qα

q−1(ǫq−1, ǫq, ǫq+1, . . . , ǫ−1 , ǫ0) , (3.50)

δǫqG
α
q+1 =

0∑

q′=q

Gβ
q′+1 T q′,α

q ,β , q = 0,−1, . . . ,−pα , (3.51)

with parameters ǫα
q ∈ Ωpα+q(U)⊗Θ∗α and where we temporarily tolerate terms nonlinear

in the ǫq’s. We use the notation ǫα
0 := Xα, ǫα

−1 := ǫα, Gα
1 := Rα, Gα

0 := Gα , Gα
−pα

≡ 0 .

One can show that the structure functions Qα
q with q < 0 are related to those in the

Bianchi identities by

q < 0 : Qα
q = Qα

−q|Zα
q′
→ǫα

−q′
(3.52)

and that the rotation matrices are explicitly given by

T q′,α
q ,β = ∂q′

β Qα
q−1({ǫq̃}

0
q̃=q−1) , ∂q′

α := ∂/∂ǫα
q′ , q 6 q′ 6 0 . (3.53)

In order to demonstrate the above assertions, let us first summarize the notation (q 6 0):

{ǫα
q }

∞
−q=0 = {ǫα

0 , ǫα
−1 , . . .} = {Xα, ǫα, . . . } , δǫα

q = Gα
q , (3.54)

{Gα
q+1}

∞
−q=0 = {Gα

1 := Rα, Gα
0 , Gα

−1, . . .} , Gα
q+1 := dǫα

q + Qα
q ({ǫβ

q′}
0
q′=q) . (3.55)
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Then, for any given q 6 0 , the (1− q)th level of gauge transformations δǫα
q = Gα

q must by

definition transform {Gα
q′}

1
q′=q+1 into themselves. This is trivial for q′ > (q + 2) since the

corresponding Gα
q′ ’s are independent of ǫα

q , while

δGα
q+1 = d(δǫα

q ) + δǫβ
q ∂q

βQα
q = dGα

q + Gβ
q ∂q

βQα
q =

0∑

q′=q−1

(Gβ
q′+1 − Qβ

q′)∂
q′

β Qα
q−1 + Gβ

q ∂q
βQα

q

= Gβ
q (∂q−1

β Qα
q−1 + ∂q

βQα
q ) −

0∑

q′=q−1

Qβ
q′ ∂q′

β Qα
q−1 +

0∑

q′=q

Gβ
q′+1 ∂q′

β Qα
q−1 , (3.56)

where the last term can be written
∑0

q′=q Gβ
q′+1 ∂q′

β Qα
q−1 =

∑0
q′=q Gβ

q′+1 T q′,α
q ,β , with the

definition of the matrix T given in (3.53). Canceling the first two terms requires Qα
q−1 to

obey ∂q−1
β Qα

q−1 + ∂q
βQα

q = 0 and the integrability condition
∑0

q′=q−1 Qβ
q′∂

q′

β Qα
q−1 = 0 . For

example, for q = 0 one has δRα = Gβ(∂−1
β Qα

−1 + ∂βQα) −
∑0

q′=−1 Qβ
q′∂

q′

β Qα
−1 + Rβ∂βQα

−1

which is admissible iff Qα
−1 = −ǫβ∂βQα . For q 6 0 this solution generalizes to

Qα
q−1 = −

0∑

q′=q

ǫβ
q′−1∂

q′

β Qα
q , (3.57)

which we identify as the transformation (3.52) of (3.35).

Linearizing the expression (3.50) in the parameters ǫα
q with q < 0 , one recovers (3.48).

3.7 Foliations

In this subsection, by the symbol L we mean either LAdS or LdS . We consider a Riemannian

free differential algebra R̂ with generalized curvatures

T̂ bα := dŴ bα + Q̂bα(Ŵ ) (3.58)

over a base manifold M̂ with a smooth foliation i : M̂×R → M̂i ⊆ M̂ where M̂i is a region

of M̂ foliated with leaves ML := iL(M̂ ) := i(M̂ , L) of codimension 1 and a non-vanishing

normal 1-form N = dφ , where φ : M̂i → R is defined by φ(ML) = L . The normal vector

field ξ is parallel to N and normalized such that iξN = 1 .

Defining (n > 0)

(Lξ)
nŴ bα := Û bα

n + NV̂ bα
n , iξÛ

bα
n := 0 =: iξV̂

bα
n , (3.59)

X̂ bα := Û bα
0

, Ŷ bα := V̂ bα
0

, Û bα := Û bα
1

, V̂ bα := V̂ bα
1

, (3.60)

where V̂ bα
n ≡ 0 if pbα = 0 , it follows that

Û bα
n = (Lξ)

nX̂ bα , V̂ bα
n = (Lξ)

nŶ bα . (3.61)

Defining R̂bα
n := (1 − Niξ)(Lξ)

nT̂ bα and Ŝbα
n := −iξ(Lξ)

nT̂ bα , the constraints take the form

R̂bα
n = (d − NLξ)Û

bα
n + f̂ bα

n ({Ûm}n
m=0) ≈ 0 , (3.62)

Ŝbα
n = (d − NLξ)V̂

bα
n + ĝbα

n({Ûm, V̂m}n
m=0) − Û bα

n+1 ≈ 0 for pbα > 1 , (3.63)
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where the structure functions are given by

f̂ bα
n := (1 − Niξ)(Lξ)

nQ̂bα(X̂ + NŶ ) = (Lξ)
nQ̂bα(X̂) , (3.64)

ĝbα
n := −iξ(Lξ)

nQ̂bα(X̂ + NŶ ) = −(Lξ)
n

(
Ŷ

bβ∂bβQ̂bα(X̂)
)

for pbα > 1 . (3.65)

Defining (U bα
n , V bα

n ;Rbα
n, Sbα

n ) := i∗L(Û bα
n , V̂ bα

n ; R̂bα
n , Ŝbα

n ) , the reduced constraints read

Rbα
n = dU bα

n + f̂ bα
n ({Um}n

m=0) ≈ 0 , (3.66)

Sbα
n = dV bα

n − U bα
n+1 + ĝbα

n({Um, Vm}n
m=0) ≈ 0 for pbα > 1 . (3.67)

Define f bα(X) := Q̂bα(X) and gbα(X,Y ) := −Y
bβ∂bβf bα(X) . The closed subsystem

Rbα := dX bα + f bα(X) ≈ 0 , (3.68)

Sbα := dY bα + gbα(X,Y ) − U bα ≈ 0 for pbα > 1 , (3.69)

P bα := dU bα − gbα(X,U) ≈ 0 , (3.70)

contains three sets of zero -forms, namely {Φbα0

} , {U bα0

} = {i∗LLξΦ̂
bα0

} and {Y bα0

} =

{i∗LiξÂ
bα1

} .

An irreducible model may arise from subsidiary constraints on:

i) the normal Lie derivatives

U bα ≈ −∆bα(X,Y ) , (3.71)

where the functions ∆bα thus assign scaling weights to the fields under rescalings in

L ; and

ii) zero -forms

ΞR0

(X bα0

, Y bα0

) ≈ 0 , (3.72)

where ΞR0

denotes a set of functions.

Cartan integrability requires that

d∆bα − gbα(X,∆) ≡ (R
bβ∂

(X)
bβ + S

bβ∂
(Y )
bβ )∆bα , (3.73)

dΞR0

≡ (Rbα0

∂
(X)
bα0 + Sbα0

∂
(Y )
bα0 )ΞR0

. (3.74)

where the exterior derivatives on the left-hand sides are expanded using the chain rule.

The former condition ensures the integrability of the constrained curvature constraint

Sbα|U=−∆ = dY bα + ∆bα(X,Y ) + gbα(X,Y ) ≈ 0 , (3.75)

since the U -dependent terms in dSbα cancel separately prior to imposing (3.71). The sub-

sidiary constraints can equivalently be imposed directly on M̂ as
(
Û bα, V̂ bα

)
≈

(
∆bα(X̂, Ŷ ),Υbα(X̂, Ŷ )

)
, ΞR0

(X̂ bα0

, Ŷ bα1) ≈ 0 , (3.76)
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where the functions Υbα can be determined from ∆bα using Cartan integrability. This is the

approach we shall use below.

There may exist many consistent sets of subsidiary constraints (it is, for example,

always consistent to set the normal Lie derivatives equal to zero). In the case of free

mixed-symmetry fields, as we shall examine in Paper II, unitarity ultimately selects non-

trivial scaling weights ∆α(X,Y ) ≡ ∆[pα]X
α+h.o.t. and a subsidiary constraint (ξ̂)bα0

bβ0
Φ

bβ0

≈

0, where ξ̂ is a differential operator in the fiber whose image is an ideal, such that the

complement Φbα0

, in a non-trivial coset, belongs to the unitarizable partially-massive Weyl

zero -form module.

4 Unfolded free fields in constantly curved spacetimes

4.1 Linearization and σ-map

The expansion of the generalized curvatures Rα := dXα + Qα(X) around a consistent

background, viz.

Xα :=
(0)

X
α + δXα , d

(0)

X
α + Qα

(
(0)

X
β

)
= 0 , (4.1)

yields a linear map σ0 : R0 → R1 with matrix elements (σ0δX)α := (σ0)
α
βδXβ defined by

Qα(Xβ) = Qα

(
(0)

X

)
+ (σ0)

α
βδXβ + O((δX)2) , (σ0)

α
β := (−1)αβ∂βQα|(0)

X

. (4.2)

This map has the expansion

σ0 =
∑

p′6p+1

(σ0)
p+1

p′ , (σ0)
p+1

p′ : Rp′

0
→ Rp+1

1
, (4.3)

where (σ0)
p+1
p+1 are “massive” constants, (σ0)

p+1
p are related to representation matrices of

the gauge Lie algebra g̃, and (σ0)
p+1

p′ with p′ 6 p − 1 are integrated cocycles of g̃ .

The linearized Bianchi identities, constraints and gauge symmetries can now be written

as

q > 2 : δZq := (d + σq−1)δZq−1 ≡ 0 , (4.4)

q = 1 : δR := (d + σ0)δX ≈ 0 , (4.5)

q 6 0 : δGq := (d + σq−1)ǫq−1 , (4.6)

where the maps σq : Rq → Rq+1 (q ∈ Z) have the expansions

σq =
∑

p′6p+1

(σq)
p+q+1

p′+q
, (σq)

p+q+1

p′+q
: Rp′+q

q → R
p+q+1
q+1 . (4.7)

The resulting triangular module T and extended map σ : T → T are defined by

T :=
⊕

q∈Z

Rq , σ :=
∑

q∈Z

σq , (4.8)
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where Rq :=
⊕

p∈N
Ωp+q(U)⊗T (p). The consistency of the linearization procedure implies

that (d + σ)(d + σ) ≡ 0, that is (q ∈ Z)

(d + σq+1)(d + σq) ≡ dσq + σq+1σq + (σq+1 + (−1)σqσq)d ≡ 0 (4.9)

⇔ (4.10)

σq ≡ (−1)q(1+σ◦)σ0 , (σq)
p+q+1

p′+q
≡ (−1)q(p+p′)(σ0)

p+1

p′ , (4.11)

since the lower identity implies dσq+σq+1σq ≡ 0 by virtue of the background field equations,

which can be written as

dσ0 +
[
(−1)1+σ◦σ0

]
σ0 = 0 . (4.12)

The maps (σq)
p+q+1
p+q = (σ0)

p+1
p are actually representations of g̃, and the maps σq : Rq →

Rq+1 are given in matrix notation by (σqδWq)
α = (σq)

α
βδW β

q = (−1)q(α+β)(σ0)
α
βδW β.

4.2 Grading and σ−-cohomology

The perturbative scheme may admit an ordering of the types, i.e. a surjective N-grading [23,

36, 37]

g : T → N , g
(
Rpα+q

q (Θα)
)

= g(α) , (4.13)

such that σq has a grading bounded from below by −1, that is

σq =
∑

k>−1

σ(k)
q , g ◦ σ(k)

q = σ(k)
q ◦ (g + k) , (4.14)

and consequently g ◦ σ
(k)
q+1 ◦ σ

(k′)
q = σ

(k)
q+1 ◦ σ

(k′)
q ◦ (g + k + k′). The extended triangular

module can then be arranged into a bi-graded complex

T =
⊕

k∈N

q∈Z

Tk,q , Tk,q := g−1(k) ∩ Rq =
⊕

α | g(α)=k

Rpα+q
q (Θα) , (4.15)

in which σ± :=
∑

q∈Z
σ

(±1)
q and ∇̃ := d +

∑
q∈Z

σ
(0)
q act as follows:

∇̃ : Tk,q → Tk,q+1 , ∇̃2 + {σ+, σ−} = 0 , (4.16)

σ± : Tk,q → Tk±1,q+1 , (σ−)2 = 0 . (4.17)

Each entry Tk,q is a direct sum over contributions from different degrees, which we write

as

Tk,q =
⊕

p∈N

Tp

k,q , Tp

k,q :=
⊕

α
g(α)=k
pα=p

Rp+q
q (Θα) . (4.18)

The complex T decomposes under the action of σ− into finite chains. The resulting σ−-

cohomology is governed by simple “counting” of Lorentz irreps provided that candidate

σ−-trivial pairs are actually connected by nonzero matrix elements. This holds for massless
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theories in flat spacetime while it does not hold in general for critically massless theories

in constantly curved backgrounds (the examples of the unitary massless (2, 1) and (3, 1)

fields in AdSD will be presented in Paper II).

The resulting cohomological groups Hq(σ−|T) have the following meanings [23, 36, 37]:

Hq<0(σ−|T) : differential gauge parameters , (4.19)

Hq=0(σ−|T) : dynamical fields , (4.20)

Hq=1(σ−|T) : dynamical field equations , (4.21)

Hq=2(σ−|T) : Noether, or Bianchi, identities , (4.22)

where the dynamical fields are thus all the variables in R0 that cannot be gauged away by

any of the shift symmetries in (Im σ−
−1) ∩ R0 nor eliminated algebraically by solving any

of the curvature constraints in (Im σ−
0

) ∩ R1 . If the dynamical fields sit in Tk,0 and their

equations of motion in Tk′,1 then the latter contains up to k′ − k + 1 derivatives.

We stress that unfolded dynamics distinguishes between the notion of dynamical fields

as defined above, and that of local degrees of freedom which we shall outline in section 5.

Thus, a dynamical field may be “frozen”, half-flat, and in general share Weyl tensor with

dual dynamical fields.

In the application to constantly curved backgrounds the massive Stückelberg shift-

symmetry generators can be assigned grade −1 , thereby extending the range of the g-

grading. Gauging away the Stückelberg fields from R0
0

leaves the Weyl zero -form g̃-module

C0
0

:=
R0

0

(σ
−1)

0
0 R0

−1

. (4.23)

We refer to its elements as the Weyl zero -forms and denote them by X0 . Their constraint

(d+(σ0)
1
0)X0 ≈ 0 constitutes a free differential subalgebra of R with associated triangular

module

TWeyl :=
⊕

q∈N

Cq
q . (4.24)

We refer to the elements of its σ−- cohomology at degree q = 0 as the primary Weyl tensors.

In the following, we shall write C0 for C0
0
.

4.3 Weyl zero-forms

4.3.1 Twisted-adjoint module and its dual

In a Riemannian unfolded system (see section 3.5) the Weyl zero -form module C0 decom-

poses under gλ into a “spectrum” of manifestly m-covariant gλ-modules {Tℓ}, viz.

C0
∣∣
gλ

:=
⊕

ℓ

C0
ℓ , C0

ℓ := Ω0(U) ⊗ Tℓ(0) , (4.25)
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where each Tℓ := Tℓ(0) decomposes further under m into a basis {Θαr}αr∈Sℓ
consisting of

m-types, that is

Tℓ|m :=
⊕

αr∈Sℓ

Θαr , ρℓ(Q)Θαr := (ρℓ(Q))αr

βsΘβs
, (4.26)

where ρℓ(Q) denotes the representation of Q ∈ gλ in Tℓ and (ρℓ(Q))αi
βj the representation

matrix with respect to the chosen basis. The dual representation

T
∗

ℓ |m =
⊕

αr∈Sℓ

Θ∗αr , ρ∗ℓ (Q)Θ∗αr = (ρ∗ℓ (Q))αr
βs

Θ∗βs . (4.27)

is defined by (S∗ ∈ T ∗, S ∈ T )

(ρ∗ℓ (Q)S∗)S + S∗(ρℓ(Q)S) := 0 ⇒ (ρ∗ℓ (Q))αr
βs

= −(ρℓ(Q))βs

αr . (4.28)

We use the indexation

|Θ∗αr | = |Θ
∗
| + α , α ∈ N , r = 1, . . . , nα , n0 = 1 , idem Θαr , (4.29)

where Θ
∗

is the type of the primary Weyl tensor corresponding to ℓ , |Θ| denotes the rank

of an m-type, the subindex r takes into account degeneracies at fixed rank, and nα > 0 for

α > 1 . Since (ρℓ(Pa))βs
αr vanishes if α 6= β ± 1 it follows that if nα = 0 for some α > 1

then nα′ = 0 for all α′ > α and the module has finite dimension. We refer to the remaining

infinite-dimensional cases as twisted-adjoint modules.

The Tℓ-valued Weyl zero -form X0
ℓ :=

∑
αr

X0
ℓ (Θ∗αr )Θαr (from now on we drop the

index ℓ) has vanishing gλ-covariant derivative

R1 := DX0 :=
[
∇ + (σ0)

1
0

]
X0 ≈ 0 , (σ0)

1
0 := −ieaρ(Pa) . (4.30)

In components DX0 :=
∑

αr
(DX0)(Θ∗αr)Θαr , so that

(DX0)(Θ∗αr ) = ∇X0(Θ∗αr ) + iea(ρ∗(Pa))
αr

βs
X0(Θ∗βs) ≈ 0 . (4.31)

Using Howe-dual notation (see section 2 and Paper II) the above matrix representation of

the transvections on column vectors can be mapped to

T
∗

D := T
∗ ⊗ SD , (4.32)

i.e. column vectors with components in SD, the Schur module consisting of m-types, and

decomposed as (suppressing type-indices)

symmetric basis : P̄ ∗(i) := γ̄(i)
a ρ∗(P a) , P ∗

(i) := βa
(i)ρ

∗(Pa) , (4.33)

anti-symmetric basis : P̄ ∗[i] := γ̄[i]
a ρ∗(P a) , P ∗

[i] := βa
[i]ρ

∗(Pa) , (4.34)

where γ̄
(i)
a and γ̄

[i]
a , respectively, are cell operators adding one cell with m-index a in the

ith row and column of a Schur state (and subtracting traces), and βa
(i) and βa

[i] are dittos

removing one cell (which automatically preserves tracelessness). Assuming the vielbein to

be invertible the zero -form constraint thus splits into the Howe-dual components

∇
(i)

X0 + iP̄ ∗(i)X0 ≈ 0 , ∇(i)X
0 + iP ∗

(i)X
0 ≈ 0 , (4.35)

where ∇
(i)

= γ̄
(i)
a ∇a and ∇(i) = γa

(i)∇a, and it is understood that now X0 ∈ Ω0(U)⊗ T ∗
D ,

a column vector with components in SD .
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4.3.2 Bargmann-Wigner equations

In what follows we consider gλ-modules T (Λ;M 2; Θ) — referred to as smallest m-type

gλ-modules or simply smallest-type spaces when there is no ambiguity — whose duals

T
∗ :=

V ∗

B∗
, (4.36)

where V ∗ and B∗ are the generalized Harish-Chandra modules defined by

V
∗ =

{ (∑ ∏
P̄ ∗

)
Θ

∗
}

⊃ B
∗ =

{ (∑ ∏
P̄ ∗

)
B
∗ Θ

∗
}

, (4.37)

generated from the primary m-type Θ
∗

obeying

P ∗
(i)Θ

∗
≈ 0 ,

(
ρ∗(P aPa) + M2

)
Θ

∗
≈ 0 , (4.38)

and a set of primary-Bianchi singular vectors

symmetric basis : B
∗+ Θ

∗
:= B

+(P̄ ∗(j)) Θ
∗
, (4.39)

anti-symmetric basis : B
∗− Θ

∗
:= B

−(P̄ ∗[j]) Θ
∗
, (4.40)

where {B
±} are monomials obeying the consistency conditions

P ∗
(i) B

∗+ Θ
∗

≈ 0 ≈ P ∗
[i] B

∗− Θ
∗
. (4.41)

In (4.37) the transvections ρ∗(P a) by definition act freely on Θ
∗

subject only to the com-

mutation rules and the primary constraints (4.38). The resulting bases elements are then

embedded into the m-invariant subspace

V
∗

diag :=
{

V ∗ ∈ V
∗

D : (ρ∗(Mab) + M̂ab)V
∗ = 0

}
, V

∗
D := V

∗ ⊗ SD , (4.42)

where P̄ ∗(i) = γ̄
(i)
a ρ∗(P a) act faithfully.

The resulting dual indecomposable structures read

V
∗ ∼= T

∗
E B

∗ ⇒ V ∼= T D B . (4.43)

In Ω0(U) ⊗ T ∗ hold the generalized Bargmann-Wigner equations for the primary Weyl

tensor :

∇(i)C ≈ 0 , (∇2 − M2)C ≈ 0 , B
±(∇)C ≈ 0 , C := X0(Θ

∗
) . (4.44)

We note that for generic masses there are no primary Bianchi identities. Such identities

arise only for critical masses, in which case their combination with ∇(i)C ≈ 0 implies the

mass-shell condition.6

6As we shall see, the Bianchi identities may involve more than one derivative of the primary Weyl

tensor. In such cases, their combination with ∇(i)C ≈ 0 implies the mass-shell condition of descendants

of the primary Weyl tensor. Nevertheless, since the space of Weyl 0-form fills a gλ-module, the mass-shell

condition for the lowest-type C is implied by that of any of its descendants, as they all share the same value

of the quadratic Casimir operator C2[gλ] = C2[m]−L2P aPa . In flat space, on the other hand, the situation

is more subtle, due to the completely indecomposable structure of the twisted-adjoint module (see (4.55)).
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4.3.3 Canonical bilinear form: self-duality versus strict masslessness

More explicitly, using Howe-dual notation the canonical basis for V ∗
diag reads

symmetric basis : Θ∗{nJ} :=
B+1∏

J=1

(P̄ ∗(pJ−1+1))nJ Θ
∗
, (4.45)

anti-symmetric basis : Θ∗{nJ} :=

∞∏

i=1

(P̄ ∗[i])δi({nJ})Θ
∗

, (4.46)

where (i) J = 0, 1, . . . , B + 1 labels the blocks of the shape Θ parametrized as7

Θ =
(
[s0;h0 ], [s1 ;h1 ], [s2 ;h2], . . . , [sB

;h
B
], [s

B+1
;h

B+1
]
)

, (4.47)

s0 := ∞ > s1 > · · · > s
B

> s
B+1

:= 0 , (4.48)

h0 := 0 , h1 > 1 , h2 > 1 , . . . , h
B+1

:= ∞ ; (4.49)

(ii) n
J
∈ {0, . . . , sJ−1,J} (J = 1, . . . , B + 1) are the number of cells added to the first row

of the Jth block, that is, to the (pJ−1 + 1)st row of Θ, where

s
J,K

:= s
J
− s

K
, p

J
:=

J∑

K=0

h
K

; (4.50)

(iii) δi({nJ
}) ∈ {0, 1} are dual parameters for the anti-symmetric basis. The nth level of

the module consists of the states V ∗{n} :=
⊕P

I nI=n Θ∗{nI}. Notice that, in particular,

Θ∗{0} := Θ
∗
. The canonical gλ-invariant bilinear form (·, ·)V ∗ , which is equivalent to a

canonical ditto on V ∗
diag, is defined by (Q ∈ gλ)

(Θ
∗
,Θ

∗
)V ∗

diag
:= 1 , (ρ∗(Q)S∗, S∗′)V ∗ + (S∗, ρ∗(Q)S∗′)V ∗ := 0 . (4.51)

Given S∗ =
∑∏

ρ∗(MAB)Θ
∗

=: ρ∗(Q(MAB))Θ
∗

now with Q ∈ U [gλ], idem S∗′ , the

inner product (S∗, S∗′)V ∗ = (Θ
∗
, τ(Q)Q′Θ

∗
)V ∗ =

[
τ(Q)Q′Θ

∗
]∣∣∣

Θ
∗
, the coefficient of Θ

∗

in the expansion of τ(Q)Q′Θ
∗

in the canonical basis, and where τ(Q) := Q(−MAB) (the

enveloping-algebra counterpart of matrix transposition) is the canonical anti-automorphism

of U [gλ]. The matrix elements
[
τ(Q)Q′Θ

∗
]∣∣∣

Θ
∗

are diagonal in the canonical basis. Writing

Θ∗{nI} = Q{nI}Θ
∗

one has (symmetric basis, n :=
∑

I n
I
)

[
τ(Q{nI})Q{n′

I}Θ
∗
]∣∣∣

Θ
∗

= (−1)n




1∏

J=B+1

(P ∗
(pJ−1+1))

nJ

B+1∏

K=1

(P̄ ∗(pK−1+1))n
′
K Θ

∗




∣∣∣∣∣∣
Θ

∗

.(4.52)

Obviously, in order for the above quantity to be non-vanishing, one should have n
J

= n′
J

for all J . A general “divergence”

P ∗
(i)Θ

∗{nI} =
∑

{n′
J
}|

P
J n′

J
=n−1

(
A

{nI}
(i),{n′

J
}M

2 + λ2B
{nI}
(i),{n′

J
}

)
Θ∗{n′

J
} , (4.53)

7In the following, we shall frequently suppress the labels s
0
, s

B+1
, h

0
and h

B+1
in the presentation of

the zero-form types.
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and there exists at least one i ∈ {1 + pJ−1}
B+1
J=1 such that one of the matrix elements

A
{nI}
(i),{n′

J
}

is non-vanishing. It follows that there are two very distinct classes of lowest-type

spaces:

• the self-dual (or massively deformed) spaces

|Λ| + |M2| > 0 : T ∼= T
∗ , (4.54)

for which (i) the canonical inner product is non-degenerate on T ∗ and (ii) the primary

Bianchi identities are completely fixed by Θ and M2;

• the completely indecomposable (or strictly massless) spaces8

Λ = M2 = 0 : T |g0
= Θ D Θ1r D · · · , T

∗|g0
= Θ

∗
E Θ∗1r

E · · · , (4.55)

for which (i) the canonical inner product is completely degenerate and (ii) the primary

Bianchi identities can be chosen arbitrarily;

Thus, if Λ = 0 then massive lowest-type spaces must have trivial primary Bianchi identities,

viz.

Λ = 0 and M2 6= 0 : B
∗ = ∅ , T

∗ = V
∗ , (4.56)

and hence these spaces are necessarily twisted-adjoint (infinite-dimensional), while the

strictly massless lowest-type spaces are completely degenerate in the sense that

Λ = M = 0 : V
∗ = Θ

∗
E Θ∗{1}

E Θ∗{2}
E · · · , (4.57)

so that any set of excited states can be taken to generate B∗ (in the absence of any extended

symmetry principle).

4.3.4 Critical masses for Λ 6= 0

If Λ 6= 0 then B∗ is generated by the singular vectors B
∗
NΘ

∗
(which can always be taken

to have fixed rank) obeying

N := |B∗
NΘ

∗
| − |Θ

∗
| > 0 , P ∗

(i)B
∗
NΘ

∗
= 0 , i ∈

{
1 + pJ−1|J = 1, . . . , B + 1

}
.

(4.58)

From (4.53) it follows that demanding a fixed Θ∗{nI} to become singular in general overde-

termines M2. We focus on the special

critical masses Λ 6= 0 : M2 = M2
I,N , I = 0, . . . , B , N ∈ {1, . . . , sI,I+1} , (4.59)

8If Θ = [s
1
; h

1
] with h

1
= D

2
then T (Λ= 0; M2= 0; [s

1
; D

2
]) is an so(2, D)-module where ρ(Ka)Θ = 0

and (ρ(D) − ∆(s
1
))Θ = 0 with ∆(s

1
) = s

1
+ D − 2. This module is self-dual with respect to an so(2, D)-

invariant bilinear that is inequivalent to the iso(1, D−1)-invariant bilinear form for general strictly massless

mixed-symmetry fields.
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for which B∗ contains the singular vector9

B
∗
I,NΘ

∗
= (P̄ (1+pI))NΘ

∗
= P̄ ∗[1+sI+1] · · · P̄ ∗[N+sI+1]Θ

∗
. (4.60)

This state has only one non-trivial divergence for general M2 (in the (1 + p
I
)th row, i.e.,

the first row of the (1 + I)th block) that hence vanishes iff M2 assumes a critical value.

Factoring out B∗ corresponds to imposing the primary Bianchi identities

(∇
(1+pI )

)NC = ∇
[1+sI+1]

· · · ∇
[N+sI+1]C ≈ 0 . (4.61)

Summarizing the results of the analysis carried on in the present paper and in Paper II [31],

the above critical cases consist of

(i) tensorial modules for I = 0 and N > 1;

(ii) cut twisted-adjoint modules for I = 1 and N > 1 if h1 = 1;

(iii) massless twisted-adjoint modules for:

(a) I = 1, . . . , B − 1, 1 6 N 6 s
I,I+1

and h
I

> 1

(b) I = B, N = 1 and h
B

> 1;

these cases are of special interest to us and we denote the corresponding critical

masses by

“massless” critical masses : M2
I := M2

I,N ; (4.62)

(iv) partially massless twisted-adjoint modules for:

(a) I = 2, . . . , B − 1, 1 6 N 6 s
I,I+1

and h
I

= 1

(b) I = B, N = 1 and h
B

= 1.

The tensorial T ∗-modules consist of tensorial harmonics in AdSD or dSD obtained

from tensorial harmonics on SD by Wick rotation in the (D + 1)-dimensional ambient

space. Writing Θ = (s1 ,Ξ), one has 10

L2M
2
0,N = (N + s1−1)(N + s1 + D − 2) + C2[s|s1 + N−1,Ξ] − C2 [m|Θ] , (4.63)

T
∗(Λ;M 2

0,N ; Θ) ∼=
(
s1 + N − 1,Θ

)
|gλ

, (4.64)

B
∗(Λ;M 2

0,N ; Θ) ∼= T
∗(Λ;M

2
2,1; (s1 + N,Ξ)) , (4.65)

9In general B
∗ may contain more than one singular vector. It is known that such “multiple critical

phenomena” do not occur in what we refer to as the massless cases below [32].
10Upon harmonic expansion the Young tableaux re-surface in the compact weight spaces. If λ2 > 0 then

`

s
1

+ N − 1, Ξ
´

|gλ
∼= D+(1 − s

1
− N ; Θ) which is the shadow of a massive unitary module. If λ2 < 0

then
`

s
1

+ N − 1, Ξ
´

|so(1,D) is an ideal subspace of the compact so(D)′-slicing of V (Λ; M2
0,N ; Θ) whose

complement is a unitary partially massless representation.
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where the ideal is a cut twisted-adjoint module since (s1 + N,Ξ) has first block of height

1 and width s1 + N and singular vector given by the first excitation of the first row of the

second block.

The rationale behind the statements on the gauge-field cases (iii) and (iv) of the above

classification becomes clear upon integration of the Bianchi identities, as explained in

section 4.4.2.

4.3.5 Strictly massless case

Returning to Λ = M2 = 0 we note that the translations ρ∗(Pa) acting in the strictly

massless smallest-type modules have by definition Howe-dual projections of only type P̄ ∗(i)

(that is P ∗
(i) ≡ 0). Their action on Θ

∗
generates V ∗(Θ) := V ∗(Λ=0;M 2=0;Θ). Factoring

out B∗ yields the module T ∗. Its dual T has translations ρ(Pa) (“dual derivatives”) with

Howe-dual projections only of type P(i). In the strictly massless case the submodule B∗ can

be chosen arbitrarily. Note the recent work [33] in the same context. We are interested in

(i) finite-dimensional g0-modules;

(ii) strictly massless twisted-adjoint g0-modules in which the only translation is P(1);

If a strictly massless smallest-type space T ∗(Θ) is a proper submodule of a larger ditto

T ∗(Θ
′
) (with shape Θ

′
⊂ Θ) then one refers to T (Θ) as being cut. Else one refers to T (Θ)

as being maximal, in which case the primary Bianchi identities (generating B∗) read

∇
[i]

C(Θ) ≈ 0 , i = 1, . . . , s1 . (4.66)

The cut twisted-adjoint modules arise as strictly massless limits of Stückelberg sectors of

massive twisted-adjoint modules in flat spacetime as well as critical dittos in constantly

curved spacetime.

4.3.6 Primary and secondary Bianchi identities

Returning to the zero -form constraints (4.35) one has

P ∗
(i)X

0 ∈ Im σ+ ∩ T ∗
D , P̄ ∗(i)X0 ∈ Im σ− ∩ T ∗

D , (4.67)

where P ∗
(i)X

0 contains separate massive contributions from M2 and Λ as given in (4.53),

while on the other hand

∇(i)X
0 = ∇(i)C + ∇(i)X

0
∣∣
T ∗

D

, (4.68)

∇
(i)

X0 = ∇
(i)

X0
∣∣∣
T ∗

D

+ ∇
(i)

X0
∣∣∣
B∗

D︸ ︷︷ ︸
∈V ∗

D

+ ∇
(i)

X0
∣∣∣
N ∗

D

(4.69)

where, more precisely, here C = C(Θ
∗
)|Θ〉 ∈ T ∗ ⊗ SD and N ∗

D is the content of ∇
(i)

X0

outside V ∗
D . The zero -form constraint thus amounts to
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(i) ∇
(i)

X0
∣∣∣
T ∗

D

+ iP̄ ∗(i)X0 ≈ 0 which are algebraic equations for auxiliary fields;

(ii) ∇
(i)

X0
∣∣∣
B∗

D

≈ 0 which comprise the primary Bianchi identities (that are the compo-

nents lying in H1(σ−)) and some (but not all) of their descendants which are Bianchi

identities for auxiliary fields that hold by virtue of the primary Bianchi identities;

(iii) ∇(i)C ≈ 0 (which lie in H1(σ−)) which are the primary divergence conditions on C;

(iv) ∇(i)X
0
∣∣
T ∗

D

+ i P ∗
(i)X

0 ≈ 0 which are (all) the descendants of the primary divergence

conditions, containing mass-shell conditions for C as well as auxiliary fields;

(v) ∇
(i)

X0
∣∣∣
N ∗

D

≈ 0 which are secondary Bianchi identities.

The primary Bianchi identities, divergence conditions and corresponding mass-shell con-

dition on C are the Bargmann-Wigner equations. Roughly speaking, the integration of

primary and secondary Bianchi identities, respectively, yield dynamical gauge fields and

Stückelberg fields.

4.4 Unfolded integration of Weyl zero-form

4.4.1 Integration schemes and dimensional reduction

The Weyl zero -form module C0 described by (4.31) or equivalently (4.35), can be glued

to gλ-modules Rp in various form-degrees to form chains, or branches, where each link, or

subbranch, is a separately contractible cycle (see eq. (3.12) and figure 1). The systematic

integration yields a tree with trunk given by a common Weyl zero -form C0 connected

via branches and subbranches to “leaves” given by a spectrum of dynamical fields {ϕ} in

various duality pictures.

The basic mechanism for growing a branch is to integrate a Bianchi identity in (4.35).

In the strictly massless cases the primary Bianchi identities and their Hodge duals initi-

ate primary chains that are non-contractible. In the massless self-dual cases the issue of

contractibility is more subtle (see Paper II). In the genuinely massive cases, where there

are no primary branches, the lowest secondary branch contains the gauge potential and

all the Stückelberg fields, forming a massively contractible cycle, since the primary Weyl

tensor and the dynamical gauge field share the same Lorentz type (see the example of mas-

sive spin-1 below). More generally, extended secondary integration schemes induce infinite

towers of dual dynamical potentials [39].

The “thickness” of a given branch can be varied by replacing the m-types in the finite-

dimensional gλ-irreps Rp by sl(D)-types, leading to gλ-reducible subbranches and trace-

unconstrained metric-like dynamical fields ϕ|sl(D) [22, 40] which carry the local degrees

of freedom coming from C0 (see also [41]). Such trace-unconstrained formulations thus

activate extended patterns of shift symmetries whose gauge fixing lead back to the trace-
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constrained, or “minimal”, formulations, i.e. one has the following commuting diagram:

trace-unconstrained
frame-like formulation

−→ trace- constrained
frame-like formulation

↓ ↓

trace-unconstrained
metric-like formulation

−→ trace- constrained
metric-like formulation

(4.70)

The “double-dimensional” reduction of strictly massless systems with fiber algebra

ĝ0 = iso(1,D) yields systems with fiber algebra gλ and mass parameters M . The parame-

ters λ and M , respectively, originate from the reductions of the fiber and the base-manifold

(see scheme below). Our working hypothesis is that starting from Skvortsov’s minimal

frame-like formulation of free gauge fields ϕ̂ in D + 1 dimensions with fiber algebras ĝ0

of various tangent-space signatures it is possible to reach the minimal dittos in D dimen-

sions with all possible values for λ and M (or M , the critical gauge-field mass which is

determined by the critical mass given in (4.62) for its primary Weyl tensor). Schematically,

minimal frame-like scheme for R̂(ϕ̂)|bg0

?

Lbξλ
ϕ̂

!
= ∆(λ,M)ϕ̂

minimal frame-like schemes for ⊎I R(ϕ
I
(Λ;M2

I))|gλ

?

projection to irreducible submodules

minimal frame-like scheme for R(ϕ(Λ;M2))|gλ

where Lbξλ
are Lie derivatives along vectors fields ξ̂λ, bringing in the parameter λ, and

∆(λ,M) are scaling dimensions. The relation ∆ ↔ C2 [gλ] is actually 2 ↔ 1 that for Λ 6= 0

implies two roots ∆± with dual indecomposable structures, say

∆+ : EI R(ϕ
I
(Λ;M2

I))|gλ
, ∆− : DI R(ϕ

I
(Λ;M2

I))|gλ
. (4.71)

4.4.2 Remarks on metric-like integration

In the case of Λ = 0 = M2 it was shown in [42] that the primary Bianchi identity for a

generalized Riemann tensor sitting in an sl(D)-type Θ and obeying

∇
[1]

K (Θ) ≡ 0 , (4.72)

has the general solution

K (Θ) ≡ ∇
[s1 ]

· · · ∇
[1]

ϕ(Θ) , (4.73)

where ϕ(Θ) is a metric-like tensor gauge field sitting in the sl(D)-type of shape Θ . It was

then shown [40, 43] that if s1 > 2 then the on-shell constraint

T
[12]

K (Θ) ≈ 0 , (4.74)
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i.e. K ≈ C , together with the usual boundary conditions (no runaway solutions, the fields

and all their derivatives vanish at infinity), induce carriage of D(M = 0;Θ) . Moreover,

it was shown in [22, 40] that integration of (4.72)–(4.74) yields a compensator version of

the Labastida equation. This equation reduces to the Labastida equation upon fixing shift

symmetries — for totally symmetric Θ the compensator form of the Fronsdal equation

had previously been given in [44].11 Thus the Bargmann-Wigner equations (4.44) are

equivalent modulo boundary conditions to the Labastida equation once all intermediate

shift symmetries are fixed.

The above on-shell integration generalizes to critically massless Weyl tensors when

Λ 6= 0 , since antisymmetric combinations of gλ-covariant derivatives only introduce pure

trace terms that are removed by the overall traceless projection the Weyl zero-forms are

subject to. We can now give the rationale behind the classification of section 4.3.4. We

parametrize the dynamical fields as12

Θ =
(
[s0 ;h0 ], [s1 ;h1 ], . . . , [sB

;h
B
], [s

B+1
;h

B+1
]
)

, (4.75)

s0 := ∞ > s1 > · · · > s
B

> s
B+1

:= 0 , (4.76)

h0 := 0 , h1 > 1 , h2 > 1 , . . . , h
B+1 := ∞ (4.77)

and define the quantities

s
J,K

= s
J
− s

K
, p

J
:=

J∑

K=0

h
K

, J = 0, . . . , B + 1 . (4.78)

Then, the integration of the Bianchi identities in the cases (iii) and (iv) listed above pro-

ceeds as follows. We further distinguish the subcases N = 1 and N > 1.

(iii) massless case :

• N = 1, 1 6 I 6 B, h
I

> 1 :

∇
(p

I
+1)

C(Θ
I
) = 0 ⇒ C(Θ

I
) = (∇

(p
I
)
)sI,I+1 ϕ

I
(Θ) , (4.79)

leading to a metric-like massless dynamical field ϕ
I
(Θ) ≡ ϕ(Λ;M2

I ; Θ) with

shape Θ characterized by s
J

= s
J

for all J = 1, . . . , B, B = B, h
J

= h
J

for

J 6= I, I + 1 , and h
I

= h
I
− 1 , h

I+1 = h
I+1 + 1, i.e. obtained from Θ by

subtracting one row to its Ith block and adding one to the (I + 1)st block:

Θ=
(
[s1;h1 ], . . . , [sI−1 ;hI−1], [sI

;h
I
−1], [s

I+1 ;hI+1+1], [s
I+2 ;hI+2 ], . . . , [sB

;h
B
]
)
,

(4.80)

11Totally symmetric sl(D)-tensor gauge fields were first considered in [44] though the dynamical field

equation was not of the form (4.74). The field equation (4.74) for arbitrary sl(D)-tensor gauge fields was

first proposed in [42] and then shown in [40] to be equivalent to that of [44] upon restricting to the totally

symmetric cases. Finally, in the general bosonic case, the equation (4.74) was proven to propagate the

correct massless physical degrees of freedom in [43]. For a review and other results on those issues, see [22].

See the very recent work [45] for related results.
12As for the zero-form types, in the following, we shall frequently suppress the labels s

0
, s

B+1
, h

0
and

h
B+1

, in the presentation of Young diagrams associated to dynamical fields.
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with gauge symmetry

δϕ
I
(Θ) = ∇

(pI−1)
ǫ

I
(Θ′) , (4.81)

where Θ′ is obtained from Θ by deleting one box in the (pI − 1)st row. Equiv-

alently, the Weyl tensor type can be parametrized with the dynamical field

labels as

ΘI =
(
[s1;h1 ], . . . , [sI−1

;h
I−1

], [s
I
;h

I
+1], [s

I+1
;h

I+1
−1], [s

I+2
;h

I+2
], . . . , [s

B
;h

B
]
)
,

(4.82)

and expressed as C(Θ
I
) = (∇

(p
I
+1)

)sI,I+1 ϕI(Θ), with δϕ
I
(Θ) = ∇

(pI)
ǫ

I
(Θ′).

The primary divergence condition implies that ϕ(Λ;M2
I ; Θ) obeys Lorentz-like

first-order divergence conditions in the blocks J 6= I.

• 1 < N 6 s
I,I+1

, 1 6 I 6 B − 1, h
I

> 1 :

(∇
(p

I
+1)

)N C(Θ
I
) = 0 ⇒ C(Θ

I
) = (∇

(p
I
)
)sI,I+1−N+1 ϕ

I
(Θ) , (4.83)

corresponding to the primary Weyl tensor of a metric-like massless dynamical

field of shape Θ obtained by cutting off one row from the Ith block of Θ
I

and

inserting one extra block of height one and length s
I+1

+N −1 inserted between

the Ith and the (I + 1)st blocks,

Θ =
(
[s1 ;h1 ], [s2;h2 ], . . . , [sI

;h
I
− 1], [s

I+1
+ N − 1; 1], [s

I+1
;h

I+1
], . . . , [s

B
;h

B
]
)
,

(4.84)

i.e., B = B + 1, s
J

= s
J

for J = 1, . . . , I, s
I+1

= s
I+1

+ N − 1 and s
J

= s
J−1

for J = I + 2, . . . , B , while h
J

= h
J

for J = 1, . . . , I − 1, h
I

= h
I
− 1 h

I+1
= 1

and h
J

= h
J−1

for J = I + 2, . . . , B . The gauge symmetry still involves only

one derivative,

δϕ
I
(Θ) = ∇

(pI−1)
ǫ

I
(Θ′) . (4.85)

Notice that for the gauge symmetry to exist and to be the standard one associated

to massless fields it is crucial that h
I

> 1.

In the massless case with N = 1 , see figure 2 for a pictorial representation of the

integration precedure.

On the other hand, partially massless dynamical fields arise for:

(iv) partially massless fields :

• N = 1, 2 6 I 6 B, h
I

= 1 (2 6 k = s
I−1,I

+ 1 6 s
I−1,I+1

):

∇
(p

I
+1)

C(Θ
I,k

) = 0 ⇒ C(Θ
I,k

) = (∇
(p

I
)
)sI,I+1 ϕ

I,k
(Θ) , (4.86)

leading to a metric-like partially massless dynamical field with shape Θ which

can be obtained from Θ by cutting off the Ith block and by adding one row to

the I + 1st block,

Θ =
(
[s1 ;h1 ], . . . , [sI−1

;h
I−1

], [s
I+1

;h
I+1

+ 1], . . . , [s
B
;h

B
]
)

, (4.87)

– 31 –



J
H
E
P
0
7
(
2
0
0
9
)
0
1
3

Θ2 = , B2,1(Θ2) =

∇

= 0 ⇒

C(Θ2) = (∇
(p2+1)

)s23ϕ2(Θ) =

∇ . . . ∇

,

δϕ2(Θ) = ∇
(p2)ǫ2(Θ

′) =
∇

Figure 2. By means of the integration lemma, the primary Weyl tensor C(Θ
2
) with Bianchi

identity B
2,1

(Θ
2
) is shown to correspond to a massless gauge field ϕ

2
(Θ) whose shape is obtained

from Θ
2

by cutting off one row from its second block and by adding one to its third block. It

possesses a one-derivative gauge symmetry with parameter ǫ
2
(Θ′), obtained from Θ by deleting one

cell in the second block.

i.e., characterized by B = B − 1, s
J

= s
J

and h
J

= h
J

for all J = 1, . . . , I − 1,

s
J

= s
J+1

, h
I

= h
I+1

+ 1 and h
J

= h
J+1

for J = I + 1, . . . , B . Due to the fact

that h
I

= 1, the gauge symmetry this time is a higher-derivative one,

δϕ
I,k

(Θ) = (∇
(pI−1)

)k ϕ
I,k

(Θ) = (∇
(pI−1)

)k ǫ
I,k

(Θ′) , (4.88)

where now Θ′ is obtained from Θ by deleting k boxes from the (pI−1)th row.

• 1 < N 6 s
I,I+1 , 2 6 I 6 B−1, h

I
, (2 6 k = s

I−1,I
+1 6 s

I−1,I+1 −N +1):

(∇
(p

I
+1)

)N C(Θ
I,k

) = 0 ⇒ C(Θ
I,k

) = (∇
(p

I
)
)sI,I+1−N+1 ϕ

I,k
(Θ) ,

(4.89)

corresponding to the primary Weyl tensor of a metric-like partially massless

dynamical field of shape Θ that can be obtained from Θ by shortening the Ith
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block (of height one) from length s
I

to s
I+1

+ N − 1, while all other lengths and

heights remain untouched,

Θ =
(
[s1 ;h1 ], . . . , [sI−1

;h
I−1

], [s
I+1

+N−1; 1], [s
I+1

;h
I+1

], . . . , [s
B
;h

B
]
)

. (4.90)

The higher-derivative gauge symmetry is as in (4.88).

Our classification and definition of partially massless fields generalizes to the mixed-

symmetry cases the results of [46] for totally symmetric fields in the framework on unfolding.

Totally symmetric partially massless fields were first discussed in [47] and further studied

in [48, 49] (see also [50] and references therein).

In the partially massless case, a pictorial representation of the integration procedure

is given in figure 3.

The cases (i) and (ii) of the classification given in section 4.3.4 do not involve gauge

symmetries.

In what follows we leave the details of the above metric-like integration scheme aside,

and instead focus on minimal frame-like integration schemes.

4.4.3 Example of massive spin 1 in flat spacetime

The “minimal” unfolded iso(1,D − 1)-module of a massive spin-1 field in R
1,D−1 can be

obtained by dimensional reduction of a strictly massless spin-1 in one higher dimension.

Equivalently, it may be obtained in a more pedestrian way by integration of the Weyl

zero -form module. The latter is spanned by

Θ = (1) ; Θαr = (α + 2 − r, r − 1) , α > 1 , r = 1, 2 . (4.91)

The first two levels of the Weyl zero -form constraint read

∇Ca + ebΦab +
M

2
ebΦa,b ≈ 0 (α = 0) , (4.92)

∇Φab + ecΦabc +
M

4
ecΦab,c −

M
2

(D − 1)
e(aCb) ≈ 0 (α = 11) , (4.93)

∇Φa,b + ecΦc[a,b] +
2M

D − 1
e[aCb] ≈ 0 (α = 12) . (4.94)

There are no primary Bianchi identities, while there is a secondary one at the first level,

viz. ∇[aΦb,c] ≈ 0 . Its integration yields dA+ 1
2eaebΦa,b ≈ 0 . Revisiting the zeroth level, its

totally anti-symmetric part reads ∇[aCb] + M ∇[aAb] ≈ 0 , which can be integrated using a

0 -form χ, obtaining

dA +
1

2
eaebΦa,b ≈ 0 , dχ + MA + eaCa ≈ 0 . (4.95)

The σ−-cohomology is given in figure 4. For M > 0 the A and χ fields form the contractible

cycle

dχ + Z ≈ 0 , dZ ≈ 0 , Z := MA + eaCa , (4.96)
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Θ2 = , B2,1(Θ2) =
∇

= 0 ⇒

C(Θ2) = (∇
(p2+1)

)s23ϕ2(Θ) =
∇ . . . ∇

,

δϕ2(Θ) = (∇
(p2))s12+1ǫ2(Θ

′) =
∇ . . . ∇

Figure 3. Through the integration lemma explained above, the primary Weyl tensor C(Θ
2
) with

second block of height one and Bianchi identity B
2,1

(Θ
2
) is shown to correspond to a partially

massless gauge field ϕ
2
(Θ) whose shape is obtained from Θ

2
by cutting off its second block and by

adding one row to its third block. It possesses a higher-derivative gauge symmetry with parameter

ǫ
2
(Θ′), obtained from Θ by deleting s

12
+ 1 cells in the second block.

which manifests the massive Stückelberg shift symmetry that can be used to fix the gauge

χ
!
= 0 ⇒ A = −

1

M
eaCa . (4.97)

One notes that the massive shift symmetry remains well-defined also in the limit ea → 0 .

As we shall see in Paper II, the above simple example has a direct generalization to

the cases of mixed-symmetry massless fields in constantly curved backgrounds, wherein the

dynamical potentials (that would be used in for example a standard first-order action) are

the sum of a contractible field plus a remaining term given by background vielbeins con-

tracted into a “dynamical” component of the Weyl zero -form (not necessarily the primary

Weyl tensor).

– 34 –



J
H
E
P
0
7
(
2
0
0
9
)
0
1
3

grade R
−1 R0 R1 R2 R3 R4

g = 0 — ·χ

g = 1 ·ǫ
� A

C •

g = 2 —
� •

g = 3 —

g = 4 —

Figure 4. Some entries of the bi-graded triangular module for the massive spin-1 field in flat

spacetime. The σ−-cohomology contains the massive gauge field � at g = 1, the massive gauge

condition • at g = 1, the Proca equation � at g = 2 and the Noether identity • at g = 2.

4.4.4 Some generalities of unfolded integration

More generally, unfolded integration of (4.31) up to some finite level, say 0 6 α 6 ℓ̃,

introduces a finite number of variables, say Xpα(Θ∗αr)Θαr ∈ Ωpαr (U) ⊗ Θαr indicized by

α = −N(ℓ̃), . . . ,−1 and r = 1, . . . , nα, and with form degrees 0 6 pαr 6 H(ℓ̃) for some

finite maximal degree H(ℓ̃) . These variables together with C0(Λ;M 2; Θ) can be arranged

into spaces

R(ℓ̃; Λ;M 2; Θ) = RH ∪ RH−1 ∪ · · · ∪ R0 , (4.98)

Rp := Ωp(U) ⊗ T (p) , T (p)|m =
⊕

αr | pαr= p

Θαr , (4.99)

that can be extended to the triangular module T =
⊕

q∈Z
Rq with R0 := R and Rq =⋃

p R
p+q
q where

Rp+q
q := Ωp+q(U) ⊗ T (p) . (4.100)
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Using the notation of section 3.6, the extended variable Zq =
∑

αr
Zαr

q Θαr ∈ T+ (where

q > 0 , Z0 := X and Z1 := R ) obeys the linearized equations

R := (∇ + σ0(e))X ≈ 0 , Zq+1 := (∇ + σq(e))Zq ≡ 0 for q > 1 , (4.101)

where ∇̃ ≡ ∇ = d − i
2 ωabρ(Mab) , ρ(Mab) ≡ ρq(Mab) being independent of q , and σq(e) =

σ−
q (e) + σ+

q (e). The gauge transformations with parameters in T− (i.e. when q 6 0 , where

ǫ0 := X ) read

δǫǫq := Gq = (∇ + σq−1(e))ǫq−1 , q 6 0 , (4.102)

and δǫ(e + ω) ≈ 0 . The resulting maps σq : Rq → Rq+1 (q ∈ Z) have the expansions

σq =
∑

p−p′>−1

(σq)
p+q+1

p′+q
, (σq)

p+q+1

p′+q
: Rp′+q

q −→ R
p+q+1
q+1 , (4.103)

where the ranges of p and p′ are determined by deg (σq)
p+q+1

p′+q
= p − p′ + 1 > 0 .

The gλ-transformations are represented in T by Cartan gauge transformations δξ,Λ

with Killing parameters obeying δξ,Λ(e + ω) ≈ 0 . Thus

δξ,ΛZq = i
2Λabρq(Mab)Zq + iξaρq(Pa|e)Zq , q > 1 , (4.104)

δξ,Λǫq = i
2 Λabρq(Mab)ǫq + iξaρq(Pa|e)ǫq , q 6 0 , (4.105)

where, as mentioned above, ρq(Mab) = ρ(Mab) are independent of q , and

ρq(Pa|e) = i
∂

∂ea
σq : Rq → Rq (4.106)

with the expansions

ρq(Pa|e) =
∑

p−p′>0

(ρq(Pa|e))
p+q

p′+q
, (ρq(Pa|e))

p+q

p′+q
: Rp′+q

q −→ Rp+q
q , (4.107)

where ρ(p|Pa) := (ρq(Pa))
p+q
p+q are ea-independent representation matrices of form-degree

0 , i.e. ρ(p|Pa) : T (p) → T (p), and ρp−p′

q (p, p′|Pa|e) := (ρq(Pa|e))
p+q

p′+q
with p > p′ are

ea-dependent Chevalley–Eilenberg cocycles of positive form-degree p− p′ . As discussed in

section 3.4, if λ 6= 0 such maps between two submodules can only exist if at least one of

these is infinite-dimensional.

Integration of (4.106) yields

σq = µq − i

∫ 1

0
dt eaρq(Pa|te) =

∑

p>0

(µq)
p+q
p+q − i

∑

p−p′>0

1
p−p′+1

ea(ρq(Pa|e))
p+q

p′+q
, (4.108)

where thus (σq)
p+q

p′+q with p > p′ are integrals of the ea-dependence in (ρq(Pa|e))
p+q

p′+q, while

µq(p − 1, p) := (µq)
p+q
p+q : Rp+q

q −→ R
p+q
q+1 , µq(p − 1, p) : T (p) −→ T (p − 1)

(4.109)

are massive integration constants of degree 0 (see for example the constant M in (4.95)).
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Cartan integrability amounts to that

(∇ + σq+1)(∇ + σq) ≡ 0 ⇔

{
(∇σq) + σq+1σq ≡ i

2 λ2 eaebρ(Mab) ,

(σq+1 + (−1)σqσq)∇ ≡ 0 ,
(4.110)

where the background field equations for ∇ and ea have been used. This implies that

σq ≡ (−1)1+σq−1σq−1 = (−1)q(1+σ◦)σ0 =
∑

p−p′+1>0

(−1)q(p−p′)(σ0)
p+1

p′ (4.111)

=
∑

p>0

(
(−1)qµ(p, p + 1) − ieaρ(p|Pa)

)
− i

∑

p>p′

(−1)q(p−p′)

p−p′+1
eaρp−p′

0
(p, p′|Pa|e) , (4.112)

and that the independent element σ0 must obey the algebraic equation

[(−1)σ◦σ0] σ0 ≡
i

2
λ2 eaebρ(Mab) . (4.113)

The massive integration constants induce a maximal contractible cycle Sµ(ℓ̃; Λ;M
2
; Θ)

with ea-independent dimension which we refer to as the massively contractible cycle, viz.

R(ℓ̃; Λ;M 2; Θ)
∣∣∣
gλ

= Sµ(ℓ̃; Λ;M 2; Θ) ⊕ R′(ℓ̃; Λ;M
2
; Θ) . (4.114)

The factorization under gλ of R′ depends on ea — since disentangling its contractible cycles

requires assumptions about the dual vector frame θa .

If ea is non-degenerate then we refer to the maximal chain R̃(ℓ̃; Λ;M
2
; Θ) of dual

submodules in R′ as its potential module, viz.

R′(ℓ̃; Λ;M 2; Θ)
∣∣∣
gλ

= R̃(ℓ̃; Λ;M 2; Θ) E C0(ℓ̃; Λ;M
2
; Θ) , (4.115)

which extends up to some form-degree H̃(ℓ̃) 6 H(ℓ̃) . The resulting σ−-cohomology in R′

is a set of

dynamical gauge potentials :
{
ϕ(Λ;M2; Θ)

}
:= Hq=0(σ−|T) ∩ R′ , (4.116)

which thus comprise the m-tensors in R′ that are algebraically unconstrained and not

subject to any algebraic shift symmetries on-shell.

4.4.5 Skvortsov’s iso(1,D − 1)-modules and obstructed Λ-deformations

Recently Skvortsov [23] has given an iso(1,D − 1) module

R(Λ=0;Θ) := R̃0(Λ=0;Θ) E C0(Λ=0;Θ) . (4.117)

providing an integration scheme that connects a massless Weyl tensor C(Θ
∗
) in flat space-

time to the doubly traceless Labastida tensor gauge field ϕ(Θ∗) via a potential module

R̃q=0(Λ=0;Θ) :=
−1∑

α=−s1

Xpα(Θ∗α)Θα ∈
−1⊕

α=−s1

Ωpα(U) ⊗ Θα , (4.118)
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with 0 < pα 6 p
B

. In the generalized holonomic gauge the dynamical field

ϕ(Λ=0;Θ∗) := PΘ

[
iθa1 · · · iθap

B
Xα=−s1

]

can be identified as the Labastida field.

The system remains Cartan integrable and the local degrees of freedom remain un-

changed if Θα are replaced by sl(D)-types for α < 0 (pα > 0). The trace parts form a

Cartan integrable subsystem without zero -form source, whose contraction leads back to the

original minimal system. Prior to contracting the trace parts one has a dynamical metric-

like sl(D)-tensor gauge field ϕ(Θ∗) of the same shape as the Labastida field. Hence the

dynamical field equation of the extended unfolded system must be the trace-unconstrained

Labastida equations of [22, 40, 44].

A key feature of the Skvortsov module is that in form-degrees p > 0 it consists of

finite-dimensional smallest-type iso(1,D − 1)-irreps (see section 2 for notation)

T (p) := T
−

(p+1)(Θ
−
[p]) , p > 0 , (4.119)

where the smallest m-types Θ−
[p] depend on the overall spin Θ in accordance with [23].

The smallest-type irrep T
−

(i)(Θ
−) can be deformed to so(2,D − 1) tensors iff Θ− is

rectangular and i = height(Θ−)+1 . The irreps in the Skvortsov module fulfil this criterion

iff Θ is rectangular, say Θ = [s1;h1 ] . Then also the twisted-adjoint module T (Λ=0;M 2=

0;Θ) admits an uplift to a twisted-adjoint so(2,D − 1)-module T (Λ;M 2
1; Θ) with critical

mass defined by (4.62). Hence there exists a “vertical uplift” R′(Λ;Θ) of R(Λ = 0;Θ)

that requires only covariantizations and critical mass terms without changing the field

content [51], and with a smooth reverse limit13

Θ rectangular : R′(Λ;Θ)
λ→0
−→ R(Λ = 0;Θ) . (4.120)

If Θ has mixed symmetry, however, then the strictly massless Skvortsov system cannot

be trivially uplifted on its own. Instead, according to the conjecture by Brink, Metsaev

and Vasiliev [32] there exists a non-trivial extension by massless fields {χ(Θ′∗)}Θ′∈Σ1
BMV(Θ)

of lower rank such that the direct sum RBMV :=
⊕

Θ′∈Σ1
BMV(Θ) R(Λ = 0;Θ′) , admits a

smooth deformation into constantly curved spacetime.

4.5 Unfolding the BMV conjecture

As found by Metsaev in [26, 27], a given so(D − 1)-spin of shape Θ consisting of B blocks

yields B inequivalent massless lowest-weight spaces D(eI
0
; Θ) of so(2,D − 1) , each having

a single singular vector associated with the Ith block of Θ (I = 1, . . . , B ). The corre-

sponding Lorentz-covariant and partially gauge-fixed equations of motion for a gauge field

ϕ(Λ;M2
I ; Θ) were also given in [26, 27] (the critical gauge-field mass follows the critical

mass M2
I given in (4.62) for its primary Weyl tensor). The partially massive nature of

the cases with B > 1 later led Brink, Metsaev and Vasiliev [32] to conclude that upon

13In particular, if Θ is rectangular of height h
1

= (D−2)/2 then ϕ(Λ;Θ) is a conformal tensor field which

has a smooth limit from Λ 6= 0 to Λ = 0 .
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adding Stückelberg fields {χ(Λ;Θ′)}Θ′∈ΣI
BMV(Θ) (associated with all blocks except the Ith

one) the resulting extended system must have a smooth flat limit in the sense of counting

local degrees of freedom.

Taking into account also the unitarity issue — only D(e1
0
; Θ) is unitary — BMV con-

jectured that the fully gauge invariant action SΛ
I := S[ϕ(Λ;M2

I ; Θ), {χ(Λ;Θ′)}] should have

the flat-space limit

BMV conjecture : SΛ
I

λ→0
−→

∑

Θ′∈ΣI
BMV(Θ)

(−1)ǫI
(Θ′)SΛ=0[ϕ(Λ = 0,Θ′)] , (4.121)

ΣI
BMV(Θ) = Θ|so(D−2) \ ΣIth block(Θ) , (4.122)

where: (i) ΣIthblock(Θ) is the subset of Θ|so(D−2) obtained by deleting at least one cell in the

Ith block; and (ii) the phase factors (−1)ǫI
(Θ′) are all positive iff I = 1 . Group-theoretically,

the BMV conjecture implies that

BMV contraction : D(eI
0
; Θ)

λ→0
−→

⊕

Θ′∈ΣI
BMV(Θ)

(−1)ǫI
(Θ′)D(Λ=0;M2=0;Θ′) . (4.123)

The dimensional reduction in (4.122) and the fact that the zero -forms carry the local

unfolded degrees of freedom suggests the following step-by-step unfolding of the BMV

conjecture:

i) unfold the tensor gauge field ϕ̂(Θ̂) in R
2,D−1 and foliate a region of R

2,D−1 with AdSD

leaves of inverse radius λ = 1/L and with normal vector field ξ obeying ξ2 = −1 ,

which we shall refer to as the radial vector field;

ii) set the radial Lie derivative (Lξ + λ∆̂)X̂ = 0 , where ∆̂ are scaling dimensions

compatible with Cartan integrability, see section 3.7;

iii) constrain the shapes Θ̂bα (α̂ = 0, 1, . . . ) in the Weyl zero -form module Ĉ0(Λ=0;M 2=

0; Θ̂) in accordance with (4.122), i.e. demand their (p
I
+ 1)st row to be transverse to

ξ̂ where p
I

= p̄
I
− 1 =

∑I
J=1 h

J
;

iv) demonstrate that the unfolded system in anti-de Sitter space time carries the massless

degree of freedom D(eI
0
; Θ) on the left-hand-side of (4.123);

v) take the flat limit without fixing any massive shift symmetries and show that the

resulting unfolded system in flat space carries the massless degrees of freedom on the

right-hand-side of (4.123) and contains the corresponding D-dimensional Skvortsov

modules.

The above procedure is performed in Paper II.
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5 On local degrees of freedom in unfolded dynamics

The notion of “local degrees of freedom” differs between the standard and unfolded on-

shell formulations of field theory. They essentially agree locally for standard propagating

dynamical fields with unconstrained Weyl tensors. In this section we also comment on

the role of the cosmological constant and dual Weyl zero -forms for vertex-operator-like

constructs in field theory in higher dimensions.

5.1 Fibrations and classical observables

The Lie derivatives Lξ = {d, iξ} along vector fields ξ on the base manifold are realized on

the constraint surface as Cartan gauge transformations with field-dependent parameters,

viz.

LξX
α ≡ δiξ(X)X

α + iξR
α ≈ δiξ(X)X

α , ξα(X) = iξX
α . (5.1)

Conversely, by identifying a suitably defined generalized vierbein 1-form EA in the free

differential algebra, a subset of the Cartan gauge symmetries, referred to as the local

translations and associated with ξA, can be traded for locally defined Lie derivatives. By

furthermore declaring that only globally defined Lie derivatives are actual symmetries of

the unfolded system14 it becomes possible to define free differential algebra invariants.

The first part of this definition, that we shall refer to as a fibration, consists of a choice

of base manifold M and a corresponding splitting

Xα = (ΩI ;EA,Φα0) , ǫα = (ΛI , ξA) , (5.2)

such that:

i) EA = dXMEM
A := EA

α1(Φ
α0

)Xα1

∈ Ω1(U) ⊗ Θ∗A for generically invertible EM
A,

where XM are local coordinates on M ;

ii) δΛ form a subalgebra of the algebra of Cartan gauge transformations, referred to as

the fiber rotations, with locally defined parameters ΛI ∈ ΩpI−1(U) ⊗ Θ∗I and fiber

connection ΩI ;

iii) (EA,Φα0

) transform under fiber rotations in representations with well-defined invari-

ants which we shall refer to, respectively, as the generalized types and fiber invari-

ants;15 and

iv) the locally defined parameters ξA ∈ Ω0(U)⊗Θ∗A are induced together with compen-

sating ΛI parameters from globally defined vector fields ξ ∈ Vect(M ) as in (5.1).

14By partitioning the unity, any globally defined vector field can be written as a sum of locally defined

vector fields with compact support.
15One sufficient criterion for a representation Θ to have a well-defined quadratic invariant is that Θ ∼= Θ∗

where Θ∗ is the dual of Θ. This can be obeyed for finite-dimensional as well as infinite-dimensional

representations. The latter is the case in Vasiliev’s higher-spin gauge theory for symmetric tensor fields and

has been used in [19] to construct zero -form invariants, see section 5.5.1.
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In a fibration one can define p-form invariants as functions C p = C p(E,Φ) that are (a)

invariant under fiber rotations off-shell, i.e. elements in Ωp(M ); and (b) closed on-shell,

i.e. [C ] ∈ Hp(M ) modulo Rα, viz.

δΛC = 0 , dC ≈ 0 . (5.3)

We refer to an invariant C as topological if dC ≡ 0, and dynamical if dC ≡/ 0. The local

symmetries of the fibration preserve the de Rham cohomology class [C ] since δΛC = 0 and

LξC ≈ d(iξC ) where iξC ∈ Ω[p−1](M ) due to (iv). The p-form invariants are generalized

Noether currents with associated conserved charges given by 〈Σ | C 〉 :=
∮
Σ C where Σ ∈

Hp(M ) (modulo boundary conditions). The charges obey δΛ〈Σ | C 〉 = 0 ≈ δξ〈Σ | C 〉,

and they are invariant under smooth deformations of Σ, which is the essence of being

a conserved charge. The charges are finite-dimensional integrals even if M is infinite-

dimensional, though they may diverge on given classical solutions.

5.2 Local vs ultra-local degrees of freedom

If the unfolded system is Riemannian the generalized vielbein EA = (Ea, · · · ) and the

on-shell system can be examined on a Riemannian submanifold MD ⊆ M with vielbein

ea := Ea|MD
(given in some “frame”). Since ea appears in the Rα only through positive

powers, the constraints Rα ≈ 0 can be analysed perturbatively in a local coordinate chart

U following

(i) the local approach based on first solving σ−-cohomology and then analysing the

resulting dynamical field equations subject to standard Cauchy initial conditions in

U and various boundary conditions on ∂U ; or

(ii) the ultra-local approach based on directly integrating Rα ≈ 0 in U subject to initial

data for the zero -forms imposed at a point x ∈ U and suitable gauge functions for

the pα-forms with pα > 1.

While the former approach is well-adapted to standard Lagrangian formulations of field

theory, the latter approach is more natural from the point-of-view of unfolded dynamics.

5.2.1 Local approach

Assuming a perturbatively well-defined σ−-cohomology (see section 4.2 and 4.4) the vari-

ables in R thus split into (i) Stückelberg fields which can be shifted away; (ii) auxiliary

fields which are algebraically constrained; and (iii) dynamical fields which are thus alge-

braically unconstrained16 fields not subject to any shift symmetries. Let us denote the set

of dynamical fields by

Sdyn =
{
ϕ(Λ;M2; Θ)

}
. (5.4)

16The dynamical fields in general sit in m-types which can always be regrouped into sl(D)-types subject

to suitable (or trivial) trace constraints.
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The constraints may also lead to dynamical field equations.17 The resulting on-shell content

of ϕ(Λ;M2; Θ) counts as local degrees of freedom only if the unfolding chain of ϕ(Λ;M2; Θ)

is sourced by a corresponding Weyl zero -form X0(Λ;M2; Θ). If not then ϕ(Λ;M2; Θ) is a

frozen dynamical field, as for example the background vielbein in an unfolded rigid theory.

Conversely, a Weyl zero -form X0(Λ;M 2; Θ) may source a set {ϕ
I
(Λ;M2

I ; Θ
I
)}P

I=1 of

dynamical fields in various dual pictures. Chiral dynamical fields arise if either X0 is

chirally projected or if some Chevalley–Eilenberg cocycle is projected while X0 remains

unprojected. The latter mechanism is realized in chiral Vasiliev-type four-dimensional

higher-spin gauge theories in Euclidean or Kleinan signatures [20].

5.2.2 Ultra-local approach

If Qα(X) = O(X2), where X comprises all unfolded variables including ea, then it is

possible to expand perturbatively around Xα = 0. The linearized equations of motion

dXα ≈ 0 imply that Xα carry no local degrees of freedom if pα > 0 . For pα = 0 , the

integration of the field equations leaves us with constant zero -forms in each coordinate

chart U . Thus {Xα} can be reconstructed perturbatively in a coordinate chart U from the

initial datum
{

Φα0
}
|x∈U and boundary conditions at ∂U . This method incorporates all

local degrees of freedom into R0, facilitating the freezing of topological dynamical fields as

well as chirality projections and duality extensions.

Given {Φα0

|x} and free boundary conditions a set of exact solutions are Φα0

= Φα0

|x
and Xαp

= 0 for p > 0, which we refer to as ultra-local gauges. Non-trivial p-forms

with p > 0 are switched on via gauge functions determined to some extent by boundary

conditions. In the resulting local gauges the degrees of freedom are shared between
{

Φα0

|x
}

and p-forms with p > 0. The latter to some extent spread the local degrees of freedom over

the base manifold, where they can now be recuperated using zero -form charges as well as

“complementary” charges of higher form-degree.

Since p-form charges 〈Σ | C p〉 with p > 0 vanish on-shell if Σ ⊂ U (hence Σ is trivial

in Hp(M )), the only locally available classical observables are the zero -form charges

〈x|C 0〉 = C
0(Φα0

|x) , x ∈ U , (5.5)

where 〈x|C 0〉 is independent of the choice of x on-shell. Formally, these charges remain

invariant under the gauge transformations between ultra-local and local gauges. This

motivates the definition of the space of classical local degrees of freedom of an unfolded

system as

Sloc :=
{
C

0(Φ) : Φ ∈ R0 , C
0 ∈ Sinv

}
, (5.6)

where Sinv is the set of all non-factorizable zero -form invariants.

The zero -form charges are given by infinite expansions in auxiliary zero -forms that are

given by derivatives of physical fields on-shell. The existence of such charges rely crucially

17In the unitarizable cases the field equations contain second-order hyperbolic kinetic terms. Higher-

derivative interactions may upset hyperbolicity and blur causality. These properties may, however, resurface

eventually at the level of local observables. We thank F. Strocchi for illuminating comments on this issue.
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on a non-vanishing massive parameter that can be the cosmological constant but also the

mass of a physical scalar field in flat spacetime. The definition of zero -form charges for

strictly massless fields, on the other hand, requires a suitable extension of the Weyl zero -

form by a dual ditto — the “vacuum expectation value” and runaway modes — to be

discussed below.

5.3 Perturbative ultra-local analysis

5.3.1 Expansion in Weyl zero-form, Riemannian and extended symmetries

To examine how the local degrees of freedom are contained in R0, we begin by considering

the Φ-expansion using the notation of section 3.5. Upon fixing the massive shift-symmetries

(σ
−1)

0
0 : R0

−1
→ R0

0
the constraints (3.25) and (3.26) on the Weyl zero -form Φ and gauge

connection Ã read

dΦ − iρ(Ã)Φ ≈ O(ÃΦ2) , Φ ∈ C0
0

:=
R0

0

(σ
−1)

0
0R0

−1

(5.7)

dÃ + Ã2 + Σ(Ã, Ã; C̃) ≈ O(Ã2Φ2, BΦ) , Ã ∈ g̃ , (5.8)

where ρ denotes the representation of the gauge Lie algebra g̃ in C0
0

and C̃ comprises the

primary Weyl tensors of the connections in Ã which we assume are the leading zero -form

sources of Ã (taking Φ and the variables B in higher form-degrees to be weak fields).

For Riemannian systems g̃ ∼= g D g′ where [g′, g′] may close into itself in which case

g̃ ∼= g ⊕ g′ and g′ is an “internal” gauge algebra, or with [g′, g′] ∩ g 6= ∅ in which case g′

is a non-trivial extension of g. In the latter case we assume that [g, g′] = g′, inducing a

level decomposition g̃|g :=
⊕

ℓ Lℓ where Lℓ=0
∼= g. We write Ã =

∑
ℓ Ãℓ = Ω + A′ with

Ω = Ãℓ=0 = e + ω = −i(eaPa + 1
2ωabMab). One has the spin-(2) covariantizations

DΦ := ∇Φ − ieaρ(Pa)Φ , R := dΩ + Ω2 , DA′ := dA′ + ΩA′ + A′Ω , (5.9)

where R := −i(T aPa + 1
2(Rab + λ2eaeb)Mab) with T a := ∇ea = dea + ωabeb and Rab :=

dωab + ωacωc
b, and DA′ = dA′ if [g, g′] = 0. Correspondingly, the primary Weyl tensor

C̃ =
∑

ℓ C(Λ;M 2
Iℓ

; θℓ) := C(2, 2) + C ′ where θℓ is the m-type of the primary Weyl tensor

associated with the field Ãℓ .

Eqs. (5.7) and (5.8) now read

DΦ − iρ(A′)Φ ≈ O(ÃΦ2) , (5.10)

R + PgA
′2 + Σ(e, e;C(2, 2)) ≈ O(Ã2Φ2, BΦ) (5.11)

DA′ + Pg′A
′2 + Σ(e, e;C ′) ≈ O(eA′C ′,Φ2Ã2, BΦ) . (5.12)

The Weyl zero -form module decomposes under g̃ into perturbatively defined g̃-

multiplets, viz.

C0
0

∣∣
eg :=

⊕

µ∈Smult
flavors f

C0
µ,f + O(Φ2) , C0

µ := Ω0(U) ⊗ Tµ (5.13)
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where f are external “flavors” and Tµ are g̃-modules. Decomposing further under g ∼= gλ,

assuming Λ 6= 0, yields

C0
µ

∣∣
g

:=
⊕

(M
2
;Θ;c)∈µ

C0(Λ;M
2
; Θ; c) , C0(Λ;M

2
; Θ; c) := Ω0(U) ⊗ T (Λ;M

2
; Θ; c) ,

(5.14)

where c are indices transforming under g′ and T (Λ;M
2
; Θ; c) are g-modules with mass M

smallest m-type Θ (that may be finite-dimensional or twisted-adjoint) and index c . Letting

C0
eg denote the direct sum of all C0

µ,f containing on-shell curvatures for Ã, one has

C0
eg

∣∣∣
g

:=
{ ⊕

Lℓ⊂eg
C0(Λ;M 2

Iℓ
; θℓ)

}
⊕

{ ⊕

gauge
matter

(M2;Θ)κ

C0(Λ;M 2; Θ)κ + O(Φ2)
}

, (5.15)

where the “gauge matter” is required for filling out the g̃-multiplets, and may consist of

dynamical fields with higher form-degree and/or higher spin (as for example in the case of

the higher-spin gauge theories in D = 5 and D = 7 with extended supersymmetries con-

sidered in [52, 53]). One may refer to the unfolded system as unified if C0
eg is an irreducible

g̃-module and gauge unified if in addition g̃ is irreducible.

5.3.2 Rigid, topological and gravity-like theories

If all connections in Ã have non-vanishing Weyl tensors then we refer to the model as fully

gauged, else partially gauged.18 In the latter case there exists a split

g̃ = gtop ⊕ gcol , Ã = Atop + Acol , (5.16)

where we refer to gtop and gcol as the topological and “color” gauge algebras, respectively,

and define

rigid and topological models : g ⊆ gtop is non-compact and gcol is compact , (5.17)

gravity-like models : g ⊆ gcol is non-compact , (5.18)

such that upon treating Ω = e + ω as a large field one has

dAtop + A2
top ≈ O(eA′

colΦ, Ã2Φ2, BΦ) , (5.19)

dAcol + A2
col + Σcol(e, e;Ccol) ≈ O(eA′

colΦ, Ã2Φ2, BΦ) , (5.20)

where A′
col are the components of Acol that do not lie in g. It follows that A′

col = O(Φ)

perturbatively, so that

dAtop + A2
top ≈ O(Ã2Φ2) , dAcol + A2

col + Σcol(e, e;Ccol) ≈ 0 . (5.21)

In the leading order the gtop-valued connection can be frozen locally by going to new

variables

Ω ≈ L−1dL + O(Φ̃2) , Φ′ := ρ(L)Φ , (5.22)

18Unified and non-chiral models are fully gauged which requires gravity for Riemannian systems, while

e.g. Yang-Mills theory is partially gauged since the unfolded background vielbein is frozen.
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where L is a local gauge function depending on boundary conditions at ∂U , and

dΦ′ + ρ(Acol)Φ
′ ≈ O(ÃΦ2) . (5.23)

In rigid models the gauge function L by definition remains well-defined at higher orders

in the Φ-expansion, and one may argue that the space of zero -form charges is given by

gcol-invariants, i.e.

rigid models : C
0(Φ) = Icol[Φ

′] + O(Φ2) , Icol[ρ(ǫ)Φ′] ≡ 0 for all ǫ ∈ gcol . (5.24)

In topological models the gauge function L is by definition obstructed at higher orders

in the Φ-expansion, and one may argue that the space of zero -form charges is given by

g̃-invariants, i.e.

topological models : C
0(Φ) = I[Φ′] + O(Φ2) , I[ρ(ǫ)Φ′] ≡ 0 for all ǫ ∈ g̃ . (5.25)

Assuming that g̃ is realized in unitarizable Weyl zero -form modules the extraction of zero -

form charges thus leads to radically different invariant theories:

rigid models : invariants of finite-dimensional irreps , (5.26)

topological/gravity-like models : invariants of ∞-dimensional g-modules . (5.27)

We note that in rigid models the zero -form charges are manifestly ea-independent,

while some of the p-form charges with p > 0 such as Noether currents require a non-

degenerate vielbein. We also stress that the rigid models are manifestly diffeomorphism

invariant prior to freezing the g-valued connection Ω.

Physically speaking, the “confinement” of “gravitational colors” and the resulting de-

crease in the number of local degrees of freedom should be a smooth transition from (i)

a “rigid phase” at low energies in which Ω ≈ L−1dL + O(ÃΦ̃2) makes sense for weak

spin-2 Weyl tensor and graviton fields, and unconfined gravitational colors show up as

particles with mass and spin; via (ii) an intermediate “softly broken” phase where still

Ω ≈ L−1dL + O(ÃΦ̃2) while gravitational colors starts getting confined into g-invariant

p-form charges; to (iii) an unbroken phase at high energies in which Ω is expanded around

Ω = 0 (with a weakly coupled “dual” description in terms of the unfolded Poisson sigma

model) and all local degrees of freedom are confined into zero -form charges.

5.4 Free local degrees of freedom

A special case of rigid theories are the free limits in which the representation matrices

ρ(gcol) → 0 so that dΦ′ ≈ 0 in the free limit of (5.23). The space S free
loc of local free

degrees of freedom of a linearized unfolded system can thus be defined as the space T ∗(0)

of integration constants for its zero -forms modulo the space of integration constants for

the Stückelberg zero -forms, i.e. the image (σ
−1)

0
0T ∗(0) ⊂ T ∗(1) (see also eq. (4.23)). In

other words, taking into account what we have discussed so far,

S
loc
free

∼=
T ∗(0)

(σ
−1)

0
0T ∗(1)

=
⊕

(M2,Θ)c,f

T
∗(Λ;M 2,Θ)c,f , (5.28)
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where we note that the labeling using masses and smallest m-types is strictly speaking

only making sense if Λ 6= 0 while if Λ = 0 one needs to use additional discrete indices as

discussed in section 4.3. We stress that S loc
free contains the local degrees of freedom also in

local gauges with non-trivial dynamical gauge fields. Thus, in order to establish whether

free gauge fields carry unitary representations of g [6, 7] it suffices, and actually simplifies

greatly the analysis, to show that S loc
free contains a unitarizable representation D of g as

part of its spectral decomposition.

5.5 Zero-form charges in topological/gravity-like theories and role of Λ

In gravity-like and topological models the zero -form charges are built from invariant func-

tions of the Weyl zero -form. The invariant theory differs radically between the self-dual

(|Λ|+|M 2| > 0) and strictly massless (Λ = M 2 = 0) cases. In the former case the zero -form

charges are non-local functionals of the self-dual Weyl -zero form while in the latter case

they are given by local functionals of the dual Weyl zero -form which is itself a non-local

functional of the Weyl zero -form.

5.5.1 Exact zero-form charges in higher-spin gauge theory

Exact zero -form charges C 0
HS;2N ;± have been given [19] for Vasiliev’s full higher-spin gauge

theories with higher-spin algebras based on extensions of so(2, 3). The charges are given by

two types of potentially divergent traces (T̂r±) of algebraic powers of the full Weyl zero -

form master field of Vasiliev’s system. Similar charges exist also for the Lorentzian and

Euclidean theories based on extensions of so(1, 4) and so(5) [20]. The full charges C 0
HS;2N ;−

are finite on at least one exact solution, namely the so(3, 1)-invariant solution [19] and

its Euclidean “instanton” continuation [20], for which they obey the “coherence” relation

C 0
HS;2N ;− = (C 0

HS;2;−)N . Their perturbative weak-field expansion read

C
0
HS;2N ;− = Tr

[
(Φ ⋆ π(Φ))N

]
+ O(Φ2N+1) , (5.29)

where the Weyl zero -form master field Φ ∈ A , an associative unital ⋆-product algebra,

and the trace operation Tr : A → C is defined by Tr[X] = X|11, the projection to the

coefficient of 11 ∈ A .

5.5.2 Zero-form charges for self-dual free fields (|Λ| + |M 2| > 0)

The bosonic higher-spin gauge theories generalize to signatures (2,D − 1) and (1,D − 1)

(and more general signatures as well). Their unfolded systems admit the free limits

Φ →
∞∑

s=0

Φ(Λ; s, s) , Φ(Λ; s, s) ∈ C[0](Λ;M
2
1; s, s) = Ω0(U)⊗T (Λ;M

2
1; s, s) , (5.30)

where Φ(Λ; s, s) are Weyl zero -forms for composite massless spin-(s) fields, with s = 0

being the composite massless scalar with M2
1 := −4ǫ0λ

2. Following the enveloping-algebra

approach to singletons and composite massless fields [54–56] one has Φ ∈ A given by

A ∼=
U [gλ]

I [V ]
, VAB := 1

2 M(A
C ⋆ MB)C − 1

D+1ηABC2 [g] , VABCD := M[AB ⋆ MCD] ,

(5.31)
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where I [V ] is the two-sided ideal19 generated by { VAB , VABCD } and ⋆ denotes the

product in U [g] (reserving juxtaposition for the symmetrized product). The twisted-

adjoint action is given by

ρ(Q)Φ = Q ⋆ Φ − Φ ⋆ π(Q) , π(X ⋆ Y ) = π(X) ⋆ π(Y ) ∀ Q,X, Y ∈ U [g] , (5.32)

where the automorphism π is defined by π(Pa) := −Pa and π(Mab) = Mab. It follows that

A |ρ(g) =
∞⊕

s=0

T (Λ;M 2
1; s, s)

∼=

∞⊕

s=0

T
∗(Λ;M 2

1; s, s) , (5.33)

Φ(Λ; s, s) :=
∞∑

n=0

in

n!
φa(n+s),b(s)Θa(n+s),b(s) , (5.34)

Φ∗(Λ; s, s) :=
∞∑

n=0

in

n!
φ∗

a(n+s),b(s)Θ
∗a(n+s),b(s) , (5.35)

with representation matrices

ρ(Pa)Θα = λ2(ρ̂+
a )(α+1)

α Θ(α+1) + (ρ̂−a )(α−1)
α Θ(α−1) , (5.36)

ρ∗(Pa)Θ
∗α = −(ρ̂−a )α(α+1)Θ

∗(α+1) − λ2(ρ̂+
a )α(α−1)Θ

∗(α−1) , (5.37)

and canonical inner products

kαβ := (Θα,Θβ)T = λ−2n ˆNαβ , k∗αβ := (Θ∗α,Θ∗β)T ∗ = λ2n
N̂

∗αβ , (5.38)

where (ρ̂+
a )

(α+1)
α , (ρ̂−a )

(α−1)
α and ˆN ∗

αβ := [ ˆN ∗··(η . . . η)...]αβ = N̂αβ (with indices lowered by

kαβ) are independent of λ . From (5.36) and (5.37) it follows that T (Λ) ∼= T ∗(Λ) by the

equivariant map Θα → λ−2nΘ∗
α . On-shell φa(n+s),b(s) ≈ P(n+s,s)∇a1 · · · ∇anCa(s),b(s) .

In the free limit the full zero -form charges C 0
HS;2N “fragmentize” into elementary

charges

C
0
Λ,free(s1 , . . . , s2N ) := Tr [Φ(Λ; s1 , s1) ⋆ π(Φ(Λ; s2 , s2)) ⋆ · · · ⋆ π(Φ(Λ; s2N , s2N ))] . (5.39)

The quadratic charges can be identified as C 0
Λ;free(s, s) = (Φ(Λ; s, s),Φ(Λ; s, s))T , that

immediately generalizes to

self-dual module T (Λ;M 2; Θ) : C
0
free;2(Φ) = kαβφ(Θ∗α)φ(Θ∗β) . (5.40)

The higher-order invariants in (5.39) encode additional structure coefficients of the algebra

A and are related to correlators 〈VΦ(Λ;s1,s1) · · ·VΦ(Λ;s2N ,s2N )〉 in a topological open string à

la Cattaneo-Felder [57] in the phase-space of the scalar singleton, providing a microscopic

framework for Vasiliev’s oscillator formalism [11]. What constitute the corresponding data

for general self-dual modules is an interesting problem.

19One has I [V ] ∼= I [D(ǫ
0
; (0))], the annihilator of the scalar singleton D0 = D(ǫ

0
; (0)) (ǫ

0
= (D−3)/2).

The spectral decomposition of the twisted-adjoint action on A contains the Flato- Fronsdal spectrum plus

additional compact-weight states forming a larger indecomposable module [56].
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5.5.3 Strictly massless limit

In the case of free composite massless fields the quadratic zero -form charges have the

expansions

C
0
Λ,free(s, s) =

∑

α=0

λ−2nÎn(s)φa(n+s),b(s)φ
a(n+s),b(s) , (5.41)

for λ-independent În(s). These charges do not have a smooth flat limit. More generally,

one can see that C 0
Λ,free(s1 , . . . , s2N ) have no flat limit. Indeed, it is well-known that what

we refer to as strictly massless Weyl zero -forms do not admit any perturbatively defined

zero -form charges, see e.g. [58, 59] and references therein.

5.5.4 Dual Weyl zero-forms in strictly massless cases

Physically speaking, eqs. (5.36) and (5.37) shows that λ → 0 is the “strongly coupled”

limit of the oscillator realization of T , in the sense that the classical part of the ⋆-product

is scaled away, while it is at the same time the “weakly coupled” limit of the oscillator

realization of its dual T ∗. Indeed, the dual zero -form charges

C
0∗
Λ,free(s1, . . . , s2N ) := Tr [Φ∗(Λ; s1, s1) ⋆ · · · ⋆ π(Φ∗(Λ; s2N , s2N ))] (5.42)

have finite flat limits C 0∗
Λ=0,free(s1, . . . , s2N ). This suggests that strictly massless systems

should be extended by dual Weyl zero -forms

Φ∗(Λ=0) =
∑

αr

iα

α!
φ∗(Θαr)Θ

∗αr ∈ Ω0(U) ⊗ T
∗(Λ=0;M 2=0;Θ) , (5.43)

(∇− ieaρ∗(Pa))Φ
∗(Λ=0) ≈ 0 . (5.44)

Any non-factorizable m-invariant function I1...N : Θ
∗
(1)⊗· · ·⊗Θ

∗
(N) → C yields an elementary

dual zero -form charge (“vacuum expectation value”)

C
∗0
Λ=0;free;I(Θ1, . . . ,ΘN ) = I1...N [φ∗

0(Θ1), . . . , φ
∗
0(ΘN )] , ∇φ∗

0(Θ) ≈ 0 . (5.45)

For example, in the scalar sector Φ∗(Λ = 0;M 2 = 0; (0)) =
∑∞

n=0
in

n!φ
∗
a(n)Θ

∗a(n), the

elementary invariant C 0∗
Λ=0;free(11) = φ∗

0, where φ∗
0 has the transformation rule δξφ

∗
0 = 0

under local translations. The physical scalar φ and the dual scalar φ∗ obey

∇2φ ≈ 0 , ∇φ∗ ≈ 0 . (5.46)

The on-shell content of Φ(Λ=0) and Φ∗(Λ=0) that is regular in M ′ := R
1,D−1 \ {x2 = 0}

reads

φa(n) ≈
∞∑

m=0

Aa(n)b(m)Db(m) +

∞∑

m=0

D̃a(n)b(m)Ãb(m) , (5.47)

φ∗
a(n) ≈

n∑

m=0

Ã∗
{a(m)Db(n−m)} +

∞∑

n=0

∆a(n)b(m)A
∗b(m) , (5.48)
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where (i) the harmonics Da(n) and D̃a(n) are smooth functions in M ′ obeying ∇
a

Db(n) =

η
a{bDb(n−1)} and ∇aD̃b(n) = D̃ab(n) and D

(n)
b(n)|0 = 0 and D̃b(n)|∞ = 0, reducing in Cartesian

coordinates to Da(n) ∼ x{a1
· · · xan} and D̃b(n) ∼ (x2)−

1
2n−bǫ0x{a1

· · · xan} where ǫ̂0 = 1
2(D−

2); (ii) ∆a(n) are distributions that are singular at x2 = 0 , their domain consisting of

functions that are smooth at x2 = 0; and (iii) the coefficients { Aa(n) }, { Ãa(n) }, { A∗a(n) }

and { Ã∗a(n) } are four sets of integration constants spanning four separate iso(1,D − 1)

modules prior to taking into account any boundary conditions.

We propose to maintain the self-duality for Λ 6= 0 in the flat limit by defining

T (Λ) ∼= T ∗(Λ)
λ→0
−→ T̂ (Λ=0) := T (Λ=0) ⊎ T ∗(Λ=0) , (5.49)

where T (Λ= 0) := (⊎αΘa(n)) ⊎ (⊎nΘ̃a(n)) and T ∗(Λ= 0) := (⊎nΘ∗a(n)) ⊎ (⊎nΘ̃∗a(n)) and

the dual pairing is to be derived starting from

Θ∗
0(S) := the vacuum expectation value of φS , S ∈ T (Λ=0) , (5.50)

where φS is the field obtained by superposing the above mode functions with coefficient

S ∈ T (Λ= 0). The pairing (5.50) is a “strong-coupling” relation in the sense that the

right-hand-side requires taking the (Euclidean) r → ∞ limit of φS starting from the “initial

datum” S.

Physically speaking, one may think of a collection of mode functions constituting a

compact weight-space module of the form

Spec T̂ (Λ=0)
∣∣∣
g0

∼= W E D E U , (D)∗ ∼= D , (W)∗ ∼= U , (5.51)

where Spec T̂ (Λ= 0) and (Spec T̂ (Λ= 0))∗, respectively, carry the module structures of

the space of spacetime mode functions and the dual space of polarization tensors times

creation/annihilation operators (these types of quantities thus carry Lorentz indices and

compact weights transforming in dual representations of iso(1,D−1)). One expects that (i)

D consists of normalizable wave-packages given by superpositions of plane-waves Ta(n)(p) ∼

pa1 · · · pan with p2 = 0; (ii) W consists of runaway solutions including the vacuum solution

φ ≈ φ0; and (iii) U consists of singular solutions including the static “Coulomb-like” solution

φ ≈ r−2ǫ0V0 (ǫ0 := 1
2(D − 3)). A mathematical argument for (5.51) would consist of (1)

identifying a static ground state in W from which Spec T̂ (Λ=0) is generated by means of

the g0-action; (2) use this action to define the canonical bilinear form (·, ·)
Spec bT (Λ=0)

; (3)

show that this form is non-degenerate on W and vanishes on D .

In [56] the analog of the above proposal for composite massless fields in AdSD was

examined in more detail, and it was found that indeed T (Λ < 0) ∼= WΛ<0 E DΛ<0 where

DΛ<0 are the “electric” and “magnetic” lowest/highest-weight spaces (see next section)

and WΛ<0 is a “lowest-spin” module that is unitarizable at least for composite massless

scalar fields.

5.5.5 On zero-form charges in gravity with Λ 6= 0 and Λ = 0

Given the existence of zero -form charges in higher-spin gauge theory, it is natural to ask

whether C 0
Λ;free(s1, . . . , s2N ) with all si 6 2 admit perturbative corrections in the presence
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of gravity-like self-interactions, and if so, whether the resulting charges assume finite values

on exact solutions. We propose that for systems of scalars and vectors interacting with

gravity with finite Λ there exist sets of zero -form charges,

Λ 6= 0 : S
Λ
loc = S

Λ;s=0
loc ∪ S

Λ;s=1
loc ∪ S

Λ;s=2
loc , (5.52)

obtainable by perturbative “dressing” of the free-field zero -form charges given in (5.39).

One may also entertain the idea that systems of the above kind with Λ = 0 admit

non-trivial extensions by (interacting) dual Weyl zero -forms supporting sets of zero -form

charges:

Λ = 0 : S
Λ=0
loc =

{
C

0
Λ=0;VEV(Φ∗)

}
∪

{
C

0
Λ=0;mixed(Φ

∗,Φ)
}

, (5.53)

where C 0
Λ=0;VEV(Φ∗) are obtainable by perturbative dressing of the invariants given

in (5.45), and C 0
Λ=0;mixed(Φ

∗,Φ) by perturbative dressing of the free-field duality re-

lation d(Φ∗
free,Φfree) ≈ 0 and other higher-order (non-factorizable) multi-linear forms

dImixed(Φ∗
free, . . . ,Φ

∗
free︸ ︷︷ ︸

N entries

; Φfree, . . . ,Φfree︸ ︷︷ ︸
N entries

) ≈ 0.

5.6 Spectral decomposition and harmonic expansion

5.6.1 General set-up

The spectral decomposition of a twisted-adjoint module T (Λ;M 2; Θ) =: T |m is an equiv-

ariant map S −1 from its defining m-covariant basis {Θαr} to a basis {|λ〉} consisting of

h-types where h is a compact subalgebra of gλ. To find the h-types one first reduces further

under

h → s := h ∩ m ; T |m → T |s ; λ → (ν, θ) , (5.54)

where s is the spin-algebra; θ are the common spin labels of m and h; and ν is a complete

set of eigenvalues characterizing the representation h/s on the subspaces of T |s with fixed

spin θ. The maximal compact subalgebras are

self-dual case (|Λ| + |M 2| > 0) : h =

{
so(2)E ⊕ so(D − 1)s Λ ≤ 0 ,

so(D)′J Λ > 0 ,
(5.55)

strictly massless case (|Λ| = M2 = 0) : h = so(2)E ⊕ so(D − 2)s , (5.56)

where E := P0 , s is generated by Mrs and so(D)′ is generated by Jmn = (Mrs, Pr), and we

note that h is the maximal compact subalgebra in the self-dual cases.

The h-types resulting from the spectral decomposition span a gλ-module M referred

to as the compact-weight space, viz.

S
−1 : T |m −→ M := T |h :=

⊕

Σ

MΣ , MΣ|h =
⊕

λ

C ⊗ |λ〉Σ . (5.57)

where MΣ are subspaces forming separate gλ-irreps (upon factoring out the complement of

MΣ in M). We shall assume that each MΣ contains a reference state |λΣ
0 〉Σ, referred to as
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the ground state, such that MΣ is the orbit of |λΣ
0 〉Σ under U [gλ]. This state generation is

more straightforward for Λ 6= 0 than for Λ = 0 since in the former case each MΣ consists

of a discrete set of compact weights (while for fixed M2 and Θ the labels Σ generically

belong to a continuum even some further assumptions have been made).

Assuming that MΣ has a component, say θΣ
0 , in Θ|s , the reference state can be chosen

to be

|λΣ
0 〉Σ := |νΣ

0 ; θΣ
0 〉Σ = fΣ

λΣ
0

⋆ (θΣ
0 |Θ) , fΣ

λΣ
0

∈ U
Σ[gλ] , (5.58)

where (i) (θΣ
0 |Θ) ∈ T |m is the projection of Θ|s onto the s-subtype θΣ

0 ; and (ii) fΣ
λΣ
0
, the

spectral (reference) function of the sector MΣ, belongs to an analyticity class U Σ[gλ] of

U [gλ]. These classes are nonpolynomial completions of U [gλ] modulo right-multiplication

by the annihilator of (θΣ
0 |Θ) , into classes of operators with symbols (defined by the sym-

metrized Poincaré–Birkhoff–Witt product in U [gλ]) given by analytic functions such that

Q ⋆ f ∈ U
Σ[gλ] for all Q ∈ U [gλ] and f ∈ U Σ[gλ] . (5.59)

Non-analyticity can only arise in enveloping-algebra variables that are s-singlets since these

are not protected against becoming raised to fractional or negative integer powers by the

assumption that MΣ consists of s-types. We refer to fΣ
λΣ
0

as (i) regular if its symbol is

regular at MAB = 0 in which case all states in MΣ are reached from (θΣ
0 |Θ) by the action

of regular spectral functions; and (ii) irregular if its symbol is non-analytic at MAB = 0.

The orbit of an irregular spectral function may contain regular gλ-submodules giving rise

to indecomposability. The converse is not true, i.e. orbiting a regular reference state may

also yield indecomposability [56]. In the case of the scalar field, in general M contains

also sectors MΣ whose reference states are obtained by applying a spectral function to an

s-tensor contained in a descendant Θαr ∈ T with α > 0 [56].

The idea is to diagonalize the action of the generators in h/s using a set of sectors MΣ

that is “complete” according to the (vaguely stated) complementarity principle introduced

in section 5.5.4. Thus, prior to imposing any form of boundary conditions and/or reality

conditions on the Weyl zero -form, the complexified compact weight space is an indecom-

posable gλ-module. Assuming the original twisted-adjoint module T |m to be self-dual it

is natural to seek a corresponding self-dual compact-weight space (cf. eq. (5.51)), viz.

M̂|gλ
= W E D E U , (W)∗ ∼= U , D∗ ∼= D , (5.60)

where D contains particles/anti-particles and W and U complementary sectors (run-

away/singular solutions) — so that one may view the indecomposability as an enveloping-

algebra analog of the Unruh effect.

To be more precise, the aforementioned notion of completeness means that there should

exist an inverse of the spectral decomposition, called the harmonic expansion

S :=
⊕

Σ

S
T
Σ , S

T
Σ : MΣ −→ T , (5.61)
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whereby the Weyl zero -form becomes expanded as

X0(Λ;M 2; Θ|Σ;L) = S
T
Σ




∑

λ∈MΣ

Xλ
ΣL−1|λ〉Σ


 , L : MD → gλ/m , e + ω = L−1dL ,

with component fields given by

X0(Θ∗αr |Σ, L) = sumλ∈MΣ
Xλ

Σ Dαr

λ,Σ(L) , Dαr

λ,Σ(L) := Θ∗αr

[
L−1

S
T
Σ |λ〉Σ

]
, (5.62)

where (i) Xλ
Σ are constants (to become creation and annihilation operators for states in the

sector MΣ upon second quantization); and (ii) Dαr

λ,Σ(L) are generalized spherical harmonics

carrying m-indices αr as well as compact indices λ. These reduce to polarization tensors

times plane waves when Λ = 0 for a subset of the MΣ (namely, in D ).

The generalized spherical harmonics require embeddings of the m-tensors Θαr into MΣ,

which amounts to an embedding function Ψ(θ′Σ0 |Θ) such that

|θ′Σ0 |Θ〉Σ := Ψ(θ′Σ0 |Θ)|ν
′Σ
0 ; θ′Σ0 〉Σ :=

∑

ν

Ψ(θ′Σ0 |Θ); ν |ν; θ′Σ0 〉Σ , Ψ(θ′Σ0 |Θ) ∈ UΣ[gλ] ,(5.63)

where (i) θ′Σ0 is an s-subtype of Θ ; (ii) |ν ′Σ
0 ; θ′Σ0 〉Σ is corresponding reference state in MΣ

(that need not be the ground state); (iii) {|ν; θ′Σ0 〉Σ} is a basis for all states in MΣ of

s-type θ
′Σ
0 ; (iv) Ψ(θ′Σ0 |Θ); ν are complex coefficients (that can always be taken to be real by

a choice of basis); and (v) UΣ[gλ] is the analyticity class of the embedding function (whose

definition is an analog of (5.59)).

We stress that the requirement of an embedding is a necessary criterion for determin-

ing whether a given module MΣ arises in a spectral decomposition of a given T . Sufficient

criteria requires a deeper understanding of the boundary conditions and related comple-

mentarity issues that we have touched upon above.

5.6.2 The case of Λ < 0

In the case of Λ < 0 (in what follows g := so(2,D − 1)) the spectral decomposition

of T (Λ;M 2; Θ), and the corresponding harmonic expansion of the primary Weyl tensor

C(M2; Θ), first requires that one assigns the lowest m-type a definite π-parity, viz.

π(Θ) = (−1)ǫπ(Θ)Θ , ǫπ(Θ) ∈ {0, 1} . (5.64)

The h-types, that we denote by TΣ
ν;θ, are then the solutions to

ρ(E)TΣ
ν;θ = ν TΣ

ν;θ , TΣ
ν;θ := ρ(fΣ

ν;θ(E))(θ|Θ) , fΣ
ν;θ(E) =

∑

n ∈ p0+N

fΣ
ν;θ;nEn , (5.65)

where (i) (θ|Θ) is the embedding of the s-plet θ into the smallest m-type Θ ∈ T (ignoring

the special case arising for the scalar field as noted above) containing θ; (ii) fΣ
ν;θ(E) is

the spectral function with analyticity class determined by p0 (p0 = 0 for regular spectral

functions).
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Drawing on the results of [56] for composite massless scalars, we expect at least two

independent solutions fΣ
ν;θ(z) for each fixed θ and ν ∈ C, say Nreg regular and Nirreg

irregular solutions. For every h-type with energy ν there is a corresponding h-type with

energy −ν obtained by applying the π-map, that is

TΣ
−ν;θ = (−1)ǫ

Σ(ν;θ) π(TΣ
−ν;θ) = (−1)ǫ

Σ(ν;θ)+ǫπ(Θ) ρ(fΣ
ν;θ(−E)) (θ|Θ) , (5.66)

where ǫΣ(ν; θ) depends on the normalizations of TΣ
±ν;θ and monodromies in the E-plane

that arise for non-integer p0. There is also the parity

ǫ
(
TΣ

ν;θ

)
:= |θ| + [(Re ν)] mod 2 , (5.67)

that is preserved by the action of regular elements in U [g]. Thus, restricting to real µ, one

has

Λ < 0 : M|g =

∫ 1

0
dµ

⊕

ǫ=±

(
Mreg

µ;ǫ D Mirreg
µ;ǫ

)
, (5.68)

where µ ∈ [0, 1[ labels a continuum of sectors in which µ := ν − [ν].

For each value of M2, Θ and θ there is a special value of µ for which the compact

weights T
Σµ

e±0 ;θ0
with energies (ǫ0 := 1

2 (D − 3))

e±
0

= 1 + ǫ0 ± ∆0 , ∆0 :=

√
(1 + ǫ0)

2 + C2 [gλ|M2; Θ] − C2 [s|θ] (5.69)

are candidate lowest-weight states (and their image under π are candidate highest-weight

states). From the embedding condition (5.63) it follows that if C(Λ;M 2; Θ) is massive then

it contains (1 + π)D(e±
0
; Θ)+ (see Paper II for a detailed analysis). One refers to D(e0 ; Θ),

which is a unitary module, as the physical lowest-weight space, and D(ẽ0 ; Θ) as its shadow.

The former space contains the mode-functions obeying Dirichlet conditions at the boundary

of AdSD while the latter space contains the mode-functions obeying Neumann conditions.

The physical module can be embedded, or glued, into the shadow module by an element

in a suitable analyticity class U C [g] of U [g]. For example, the physical lowest-energy state

|e0 ; (0)〉 of a scalar field can be reached from the lowest-energy state of its shadow as follows

(x := δrsL+
r L+

s ):

|e0 ; (0)〉 = x∆0 |ẽ0 ; (0)〉 , ∆0 =

√
(1 + ǫ0)

2 + L2M
2

. (5.70)

The above gluing generalizes to arbitrary spins as (using Howe-dual notation)

|e0 ; Θ〉 =
∑

p

∑

{pi}P
i pi=p

f
e0 ;Θ

{pi}
x∆0−p

∏

i

(L+(i)L+
(i))

pi |ẽ0 ; Θ〉 , (5.71)

where the coefficients are fixed by L−
r |e0 ; Θ〉 = 0. One notes that the above transformation

is regular for special masses (which are in general not related to the critical masses). Thus,

in the above sense, one has

massive case : M ⊃ DC := (1 + π)
[
D(e0 ; Θ)+ D

C D(ẽ0 ; Θ)+
]

, (5.72)
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where D
C refers to the analyticity class U C [g] defined by the (5.71).

In the critically massless limits, there arises a primary Bianchi identity, say in block I,

and C(Λ;M 2
I ; Θ) develops a vanishing (multiple) curl below the Ith block. Its integration

yields a gauge field ϕ(Λ;M2
I ; Θ) . The m-types are

Θ =
(
[s1 ;h1 ], . . . , [sB

;h
B
]
)

, (5.73)

Θ =
(
[s1 ;h1 ], . . . , [sI−1 ;hI−1 ], [sI

;h
I
+ 1], [s

I+1 ;hI+1 − 1], [s
I+2 ;hI+2 ], . . . , [sB

;h
B
]
)
. (5.74)

Correspondingly, singular vectors appear in D(e±
0
; Θ), resulting in the extended module

structure:20

DC,ϕ := (1 + π)
[
D(eI,gauge

0
+ 1;Θ

′
)+ D D(eI,el

0
; Θ)+ D

C D(eI,magn
0

; Θ)+ D D(ẽI,el
0

; Θ)+
]
,

(5.75)

where Θ′ is obtained by deleting one cell from the Ith block of Θ and the energy levels are

given by (p
I

:=
∑I

J=1 h
J
):

“gauge” LWS : eI,gauge
0

= s
I
+ D − 1 − p

I
, (5.76)

“electric” LWS : eI,el
0

= s
I
+ D − 2 − p

I
, (5.77)

”magnetic” LWS : eI,magn
0

= 1 + p
I
− s

I+1
, (5.78)

“shadow” LWS : ẽI,el
0

= 1 − s
I
+ p

I
. (5.79)

The electric spaces are unitary iff I = 1 and the magnetic spaces are non-unitary for all I

except for sporadic cases with low spin in dimensions D = 4 and D = 5.

As we shall see in Paper II, the resulting harmonic expansions read:

critically massless Weyl tensor : DC = (1 + π)
[
D(eI,el

0
; Θ)+ D

C D(eI,magn
0

; Θ)+
]
, (5.80)

critically massless gauge field : Dϕ = (1 + π)
[
D(eI,gauge

0
; Θ

′
)+ D

C D(ẽ0 ; Θ)+
]
. (5.81)

One may also speculate that the structure is part of a generalization of the compact weight-

space analog of the spacetime σ−- cohomology found in [56, 60]. We defer further details

to future work [61].

The harmonic expansion of the Weyl zero -form thus contains mode-functions with

three types of complementary asymptotic behaviors: (i) fall-off/runaway behaviors at the

boundary of spacetime, (ii) singular behaviors close to a point and (iii) periodicity in time.

Boundary conditions are linear combinations of (i) and (ii) enforced by “gluings” of power

series expansions in various Euclidean distances. These boundary conditions correspond

to finiteness of various combinations of conserved charges.

The case of composite massless fields was examined in [56]. It was found that runaway

mode-functions with divergent Noether charges fill modules WC , referred to in [56] as

lowest-spin modules, in which the energy operator is unbounded from above and below.

20We are thankful to E. Skvortsov for illuminating discussions of this issue.
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These modules contain static ground states generating the indecomposable structure DC D

WC . It was found that the non-degenerate bilinear form on MC (in which DC are null

states) unitarizes WC at least for the composite scalar.

It was also argued that the states in MC have finite zero -form charges (except for the

static ground state whose zero -form charges are logarithmically divergent). The particle-

like states in DC , on the other hand, have divergent zero -form charges whose regularization

requires a map to projectors in the quantum-mechanical model defining the fiber part of

Vasiliev’s equations. It was proposed in [56] that this regularization method may make

sense in the full higher-spin gauge theory, such that the zero -form charges of [19] have the

following properties

higher-spin models : C[0] converge for perturbative initial data in W and D , (5.82)

and one may further speculate that if a specific lower-spin model can be embedded into a

higher-spin model by a nonlinear consistent truncation then also

lower-spin models : C[0] converge for perturbative initial data in W and D . (5.83)

Physically speaking, the standard Noether charges (obtained from Noether potentials in

the case of a gauge theory) are sensitive to the fall-off behaviour at the boundary while

zero -form charges are more sensitive to the local derivatives at a point. Thus the latter

may be formally divergent and require a regularization when evaluated on the solutions in

D which have to “curve” faster in the bulk than runaway solutions in order to fall off at

the boundary to yield finite Noether charges. The runaway solutions, on the other hand,

curve more slowly in order to render the zero -form charges finite, and hence do not fall off

fast enough at the boundary leading instead to infinite Noether charges.

The above proposal also rhymes well with the fact that higher-spin gauge theories

have local interactions that are “exotic” (see [62] for a recent discussion) in the sense that

their canonical perturbative expansion is given by a derivative expansion headed by “top-

vertices” covered by inverse powers of Λ whose regularization also seems to require the

algebraic form of the interactions provided by Vasiliev’s formulation.

6 Conclusion

In the present Paper I we discussed some properties of unfolded dynamics that will be used

in the companion Paper II in which we derive the equations of motion for free tensor fields

in AdSD , thereby providing an unfolded formulation of the BMV mechanism.

In the present paper we already provided the group-theoretic structure for the twisted-

adjoint Weyl module associated with arbitrary-shaped tensor fields propagating in AdSD .

In other words, in terms of Lorentz-covariant Harish-Chandra module of the non-compact

AdSD-algebra, we worked out the structure of the infinite-dimensional module associated

with the generalized Weyl tensors. An explicit oscillator realization is given in Paper II,

where we explicitly integrate the zero -form Weyl module using appropriate modules in

higher form degrees.
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We have also discussed the notion of local degrees of freedom realized in unfolded

dynamics as vertex-operator-like algebraic functions of the Weyl zero -form and its dual.

Their constructions for mixed-symmetry fields goes beyond the scope of Paper II and we

plan to return to it later.
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